This paper is concerned with stochastic H_2/H_∞ control problem for Poisson jump-diffusion systems with(x, u, v)-dependent noise, which are driven by Brownian motion and Poisson random jumps. A stochastic bounded rea...This paper is concerned with stochastic H_2/H_∞ control problem for Poisson jump-diffusion systems with(x, u, v)-dependent noise, which are driven by Brownian motion and Poisson random jumps. A stochastic bounded real lemma(SBRL for short) for Poisson jump-diffusion systems is firstly established, which stands out on its own as a very interesting theoretical problem. Further, sufficient and necessary conditions for the existence of a state feedback H_2/H_∞ control are given based on four coupled matrix Riccati equations. Finally, a discrete approximation algorithm and an example are presented.展开更多
基金supported by the Special Funds of the National Natural Science Foundation of China(No.11426154)
文摘This paper is concerned with stochastic H_2/H_∞ control problem for Poisson jump-diffusion systems with(x, u, v)-dependent noise, which are driven by Brownian motion and Poisson random jumps. A stochastic bounded real lemma(SBRL for short) for Poisson jump-diffusion systems is firstly established, which stands out on its own as a very interesting theoretical problem. Further, sufficient and necessary conditions for the existence of a state feedback H_2/H_∞ control are given based on four coupled matrix Riccati equations. Finally, a discrete approximation algorithm and an example are presented.