In this paper, we study the real quadratic function fields K=k(D), given a necessary and sufficient condition for the ideal class group H(K) of any real quadratic function field K to have a cyclic subgroup of order n,...In this paper, we study the real quadratic function fields K=k(D), given a necessary and sufficient condition for the ideal class group H(K) of any real quadratic function field K to have a cyclic subgroup of order n, and obtained eight series of such fields. The ideal class numbers h(O K) of K in the series all have a factor n.[展开更多
The theory of continued fractions of functions is used to give a lower bound for class numbers h(D) of general real quadratic function fields over k = F q (T). For five series of real quadratic function fields K, the...The theory of continued fractions of functions is used to give a lower bound for class numbers h(D) of general real quadratic function fields over k = F q (T). For five series of real quadratic function fields K, the bounds of h(D) are given more explicitly, e. g., if D = F 2 + c, then h(D) ≥ degF/degP; if D = (SG)2 + cS, then h(D) ≥ degS/degP; if D = (A m + a)2 + A, then h(D) ≥ degA/degP, where P is an irreducible polynomial splitting in K, c ∈ F q . In addition, three types of quadratic function fields K are found to have ideal class numbers bigger than one.展开更多
A parametrization of quadratic function fields whose divisor class numbers are divisible by 3 is obtained by using free parameters when the characteristics of the fields are not 3.
In this paper, the theory of continued fractions of algebraic functions will be used to give a general theorem on lower bounds for class numbers of real quadratic function fields K=k(D). The bounds are given more expl...In this paper, the theory of continued fractions of algebraic functions will be used to give a general theorem on lower bounds for class numbers of real quadratic function fields K=k(D). The bounds are given more explicitly for six types of real quadratic function fields. As a consequence, six classes of real quadratic function fields with ideal class number greater than one are given.[展开更多
Let B<sub>α</sub>(α)be an additive function on a ring of integers in the quadratic number field Q((1/2)d)given by B<sub>α</sub>(α)=∑<sub>p丨α</sub><sup>*</sup...Let B<sub>α</sub>(α)be an additive function on a ring of integers in the quadratic number field Q((1/2)d)given by B<sub>α</sub>(α)=∑<sub>p丨α</sub><sup>*</sup>N<sup>α</sup>(p)with a fixed α】0,where the asterisk means that the summation is over the non-associate prime divisors p of an integer α in Q((1/2)d),N(α)is the norm of α.In this paper we obtain the asymptotic formula of ∑<sub>N</sub>(α)≤<sub>x</sub> <sup>*</sup>B<sub>α</sub>(α)in the case where the class-number of Q((1/2)d)is one.展开更多
In this paper we study the integral curve in a random vector field perturbed by white noise. It is related to a stochastic transport-diffusion equation. Under some conditions on the covariance function of the vector f...In this paper we study the integral curve in a random vector field perturbed by white noise. It is related to a stochastic transport-diffusion equation. Under some conditions on the covariance function of the vector field, the solution of this stochastic partial differential equation is proved to have moments. The exact p-th moment is represented through integrals with respect to Brownian motions. The basic tool is Girsanov formula.展开更多
文摘In this paper, we study the real quadratic function fields K=k(D), given a necessary and sufficient condition for the ideal class group H(K) of any real quadratic function field K to have a cyclic subgroup of order n, and obtained eight series of such fields. The ideal class numbers h(O K) of K in the series all have a factor n.[
文摘The theory of continued fractions of functions is used to give a lower bound for class numbers h(D) of general real quadratic function fields over k = F q (T). For five series of real quadratic function fields K, the bounds of h(D) are given more explicitly, e. g., if D = F 2 + c, then h(D) ≥ degF/degP; if D = (SG)2 + cS, then h(D) ≥ degS/degP; if D = (A m + a)2 + A, then h(D) ≥ degA/degP, where P is an irreducible polynomial splitting in K, c ∈ F q . In addition, three types of quadratic function fields K are found to have ideal class numbers bigger than one.
基金Supported by National Natural Science Foundation of China (Grant No. 10131010)
文摘A parametrization of quadratic function fields whose divisor class numbers are divisible by 3 is obtained by using free parameters when the characteristics of the fields are not 3.
文摘In this paper, the theory of continued fractions of algebraic functions will be used to give a general theorem on lower bounds for class numbers of real quadratic function fields K=k(D). The bounds are given more explicitly for six types of real quadratic function fields. As a consequence, six classes of real quadratic function fields with ideal class number greater than one are given.[
基金Project supported by the National Natural Science Foundation of China.
文摘Let B<sub>α</sub>(α)be an additive function on a ring of integers in the quadratic number field Q((1/2)d)given by B<sub>α</sub>(α)=∑<sub>p丨α</sub><sup>*</sup>N<sup>α</sup>(p)with a fixed α】0,where the asterisk means that the summation is over the non-associate prime divisors p of an integer α in Q((1/2)d),N(α)is the norm of α.In this paper we obtain the asymptotic formula of ∑<sub>N</sub>(α)≤<sub>x</sub> <sup>*</sup>B<sub>α</sub>(α)in the case where the class-number of Q((1/2)d)is one.
文摘In this paper we study the integral curve in a random vector field perturbed by white noise. It is related to a stochastic transport-diffusion equation. Under some conditions on the covariance function of the vector field, the solution of this stochastic partial differential equation is proved to have moments. The exact p-th moment is represented through integrals with respect to Brownian motions. The basic tool is Girsanov formula.