The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcom...The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.展开更多
Dynamic positioning capability(DPCap) analysis is essential in the selection of thrusters, in their configuration, and during preliminary investigation of the positioning ability of a newly designed vessel dynamic pos...Dynamic positioning capability(DPCap) analysis is essential in the selection of thrusters, in their configuration, and during preliminary investigation of the positioning ability of a newly designed vessel dynamic positioning system.DPCap analysis can help determine the maximum environmental forces, in which the DP system can counteract in given headings. The accuracy of the DPCap analysis is determined by the precise estimation of the environmental forces as well as the effectiveness of the thrust allocation logic. This paper is dedicated to developing an effective and efficient software program for the DPCap analysis for marine vessels. Estimation of the environmental forces can be obtained by model tests, hydrodynamic computation and empirical formulas. A quadratic programming method is adopted to allocate the total thrust on every thruster of the vessel. A detailed description of the thrust allocation logic of the software program is given. The effectiveness of the new program DPCap Polar Plot(DPCPP)was validated by a DPCap analysis for a supply vessel. The present study indicates that the developed program can be used in the DPCap analysis for marine vessels. Moreover, DPCap analysis considering the thruster failure mode might give guidance to the designers of vessels whose thrusters need to be safer.展开更多
The Voronoi cell finite element method (VCFEM) is adopted to overcome the limitations of the classic displacement based finite element method in the numerical simulation of heterogeneous materials. The parametric va...The Voronoi cell finite element method (VCFEM) is adopted to overcome the limitations of the classic displacement based finite element method in the numerical simulation of heterogeneous materials. The parametric variational principle and quadratic programming method are developed for elastic-plastic Voronoi finite element analysis of two-dimensional problems. Finite element formulations are derived and a standard quadratic programming model is deduced from the elastic-plastic equations. Influence of microscopic heterogeneities on the overall mechanical response of heterogeneous materials is studied in detail. The overall properties of heterogeneous materials depend mostly on the size, shape and distribution of the material phases of the microstructure. Numerical examples are presented to demonstrate the validity and effectiveness of the method developed.展开更多
A new algorithm is developed based on the parametric variational principle for elastic-plastic analysis of Cosserat continuum. The governing equations of the classic elastic-plastic problem are regularized by adding r...A new algorithm is developed based on the parametric variational principle for elastic-plastic analysis of Cosserat continuum. The governing equations of the classic elastic-plastic problem are regularized by adding rotational degrees of freedom to the conventional translational degrees of freedom in conventional continuum mechanics. The parametric potential energy princi- ple of the Cosserat theory is developed, from which the finite element formulation of the Cosserat theory and the corresponding parametric quadratic programming model are constructed. Strain localization problems are computed and the mesh independent results are obtained.展开更多
A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle ...A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.展开更多
This paper indicates the possible difficulties for applying the interior point method to NPcomplete problems,transforms an NP-complete problem into a nonconvex quadratic program and then develops some convexity theori...This paper indicates the possible difficulties for applying the interior point method to NPcomplete problems,transforms an NP-complete problem into a nonconvex quadratic program and then develops some convexity theories for it. Lastly it proposes an algorithm which uses Karmarkar's algorithm as a subroutine. The finite convergence of this algorithm is also proved.展开更多
文摘The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51179103 and51709170)the 7th Generation Ultra Deep Water Drilling Unit Innovation Project and the Shanghai Sailing Program(Grant No.17YF1409700)
文摘Dynamic positioning capability(DPCap) analysis is essential in the selection of thrusters, in their configuration, and during preliminary investigation of the positioning ability of a newly designed vessel dynamic positioning system.DPCap analysis can help determine the maximum environmental forces, in which the DP system can counteract in given headings. The accuracy of the DPCap analysis is determined by the precise estimation of the environmental forces as well as the effectiveness of the thrust allocation logic. This paper is dedicated to developing an effective and efficient software program for the DPCap analysis for marine vessels. Estimation of the environmental forces can be obtained by model tests, hydrodynamic computation and empirical formulas. A quadratic programming method is adopted to allocate the total thrust on every thruster of the vessel. A detailed description of the thrust allocation logic of the software program is given. The effectiveness of the new program DPCap Polar Plot(DPCPP)was validated by a DPCap analysis for a supply vessel. The present study indicates that the developed program can be used in the DPCap analysis for marine vessels. Moreover, DPCap analysis considering the thruster failure mode might give guidance to the designers of vessels whose thrusters need to be safer.
基金Project supported by the National Natural Science Foundation of China(Nos.10225212, 10421002 and 10332010)the NCET Program provided by the Ministry of Education and the National Key Basic Research Special Foundation of China (No.2005CB321704)
文摘The Voronoi cell finite element method (VCFEM) is adopted to overcome the limitations of the classic displacement based finite element method in the numerical simulation of heterogeneous materials. The parametric variational principle and quadratic programming method are developed for elastic-plastic Voronoi finite element analysis of two-dimensional problems. Finite element formulations are derived and a standard quadratic programming model is deduced from the elastic-plastic equations. Influence of microscopic heterogeneities on the overall mechanical response of heterogeneous materials is studied in detail. The overall properties of heterogeneous materials depend mostly on the size, shape and distribution of the material phases of the microstructure. Numerical examples are presented to demonstrate the validity and effectiveness of the method developed.
基金Project supported by the National Natural Sciences Foundation (Nos. 50679013,10421202 and 10225212)the Program for Changjiang Scholars and Innovative Research Team in Universities of China (PCSIRT)the National Key Basic Research Special Foundation of China (No. 2005CB321704)
文摘A new algorithm is developed based on the parametric variational principle for elastic-plastic analysis of Cosserat continuum. The governing equations of the classic elastic-plastic problem are regularized by adding rotational degrees of freedom to the conventional translational degrees of freedom in conventional continuum mechanics. The parametric potential energy princi- ple of the Cosserat theory is developed, from which the finite element formulation of the Cosserat theory and the corresponding parametric quadratic programming model are constructed. Strain localization problems are computed and the mesh independent results are obtained.
文摘A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.
文摘This paper indicates the possible difficulties for applying the interior point method to NPcomplete problems,transforms an NP-complete problem into a nonconvex quadratic program and then develops some convexity theories for it. Lastly it proposes an algorithm which uses Karmarkar's algorithm as a subroutine. The finite convergence of this algorithm is also proved.