This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one c...This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one corrector step after each predictor step, where Step 2 is a predictor step and Step 4 is a corrector step in the algorithm. In the algorithm, the predictor step decreases the dual gap as much as possible in a wider neighborhood of the central path and the corrector step draws iteration points back to a narrower neighborhood and make a reduction for the dual gap. It is shown that the algorithm has O(√nL) iteration complexity which is the best result for convex quadratic programming so far.展开更多
The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off betwee...The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.展开更多
In this paper, we propose an arc-search interior-point algorithm for convex quadratic programming with a wide neighborhood of the central path, which searches the optimizers along the ellipses that approximate the ent...In this paper, we propose an arc-search interior-point algorithm for convex quadratic programming with a wide neighborhood of the central path, which searches the optimizers along the ellipses that approximate the entire central path. The favorable polynomial complexity bound of the algorithm is obtained, namely O(nlog(( x^0)~TS^0/ε)) which is as good as the linear programming analogue. Finally, the numerical experiments show that the proposed algorithm is efficient.展开更多
Predictor-corrector algorithm for linear programming, proposed by Mizuno et al.([1]), becomes the best well known in the interior point methods. The purpose of this paper is to extend these results in two directions. ...Predictor-corrector algorithm for linear programming, proposed by Mizuno et al.([1]), becomes the best well known in the interior point methods. The purpose of this paper is to extend these results in two directions. First, we modify the algorithm in order to solve convex quadratic programming with upper bounds. Second, we replace the corrector step with an iteration of Monteiro and Adler's algorithm([2]). With these modifications, the duality gap is reduced by a constant factor after each corrector step for convex quadratic programming. It is shown that the new algorithm has a O(root nL)-iteration complexity.展开更多
The paper presents a technique for solving the binary linear programming model in polynomial time. The general binary linear programming problem is transformed into a convex quadratic programming problem. The convex q...The paper presents a technique for solving the binary linear programming model in polynomial time. The general binary linear programming problem is transformed into a convex quadratic programming problem. The convex quadratic programming problem is then solved by interior point algorithms. This settles one of the open problems of whether P = NP or not. The worst case complexity of interior point algorithms for the convex quadratic problem is polynomial. It can also be shown that every liner integer problem can be converted into binary linear problem.展开更多
The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first ref...The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first reformulate the maximin dispersion problem as a non-convex quadratically constrained quadratic programming (QCQP) problem. We adopt the successive convex approximation (SCA) algorithm to solve the problem. Numerical results show that the proposed algorithm is efficient.展开更多
An algorithm to solve convex quadratic programming with nonnegative variables and linear equation constraints is given by means of the concept of ABS algorithm and decomposition strategy. If the object function is str...An algorithm to solve convex quadratic programming with nonnegative variables and linear equation constraints is given by means of the concept of ABS algorithm and decomposition strategy. If the object function is strict convex ,then the optimal solution can be gotten in finite steps ; otherwise ,the algorithm is superlinear convergent.展开更多
基金Project supported by the National Science Foundation of China (60574071) the Foundation for University Key Teacher by the Ministry of Education.
文摘This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one corrector step after each predictor step, where Step 2 is a predictor step and Step 4 is a corrector step in the algorithm. In the algorithm, the predictor step decreases the dual gap as much as possible in a wider neighborhood of the central path and the corrector step draws iteration points back to a narrower neighborhood and make a reduction for the dual gap. It is shown that the algorithm has O(√nL) iteration complexity which is the best result for convex quadratic programming so far.
文摘The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.
基金Supported by the National Natural Science Foundation of China(71471102)
文摘In this paper, we propose an arc-search interior-point algorithm for convex quadratic programming with a wide neighborhood of the central path, which searches the optimizers along the ellipses that approximate the entire central path. The favorable polynomial complexity bound of the algorithm is obtained, namely O(nlog(( x^0)~TS^0/ε)) which is as good as the linear programming analogue. Finally, the numerical experiments show that the proposed algorithm is efficient.
文摘Predictor-corrector algorithm for linear programming, proposed by Mizuno et al.([1]), becomes the best well known in the interior point methods. The purpose of this paper is to extend these results in two directions. First, we modify the algorithm in order to solve convex quadratic programming with upper bounds. Second, we replace the corrector step with an iteration of Monteiro and Adler's algorithm([2]). With these modifications, the duality gap is reduced by a constant factor after each corrector step for convex quadratic programming. It is shown that the new algorithm has a O(root nL)-iteration complexity.
文摘The paper presents a technique for solving the binary linear programming model in polynomial time. The general binary linear programming problem is transformed into a convex quadratic programming problem. The convex quadratic programming problem is then solved by interior point algorithms. This settles one of the open problems of whether P = NP or not. The worst case complexity of interior point algorithms for the convex quadratic problem is polynomial. It can also be shown that every liner integer problem can be converted into binary linear problem.
文摘The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first reformulate the maximin dispersion problem as a non-convex quadratically constrained quadratic programming (QCQP) problem. We adopt the successive convex approximation (SCA) algorithm to solve the problem. Numerical results show that the proposed algorithm is efficient.
文摘An algorithm to solve convex quadratic programming with nonnegative variables and linear equation constraints is given by means of the concept of ABS algorithm and decomposition strategy. If the object function is strict convex ,then the optimal solution can be gotten in finite steps ; otherwise ,the algorithm is superlinear convergent.