Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, anothe...Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function.展开更多
This paper deals with Furuta Pendulum(FP)or Rotary Inverted Pendulum(RIP),which is an under-actuated non-minimum unstable non-linear process.The process considered along with uncertainties which are unmodelled and ana...This paper deals with Furuta Pendulum(FP)or Rotary Inverted Pendulum(RIP),which is an under-actuated non-minimum unstable non-linear process.The process considered along with uncertainties which are unmodelled and analyses the performance of Linear Quadratic Regulator(LQR)with Kalman filter and H∞filter as two filter configurations.The LQR is a technique for developing practical feedback,in addition the desired x shows the vector of desirable states and is used as the external input to the closed-loop system.The effectiveness of the two filters in FP or RIP are measured and contrasted with rise time,peak time,settling time and maximum peak overshoot for time domain performance.The filters are also tested with gain margin,phase margin,disk stability margins for frequency domain performance and worst case stability margins for performance due to uncertainties.The H-infinity filter reduces the estimate error to a minimum,making it resilient in the worst case than the standard Kalman filter.Further,when theβrestriction value lowers,the H∞filter becomes more robust.The worst case gain performance is also focused for the two filter configurations and tested where H∞filter is found to outperform towards robust stability and performance.Also the switchover between the two filters is dependent upon a user-specified co-efficient that gives the flexibility in the design of non-linear systems.The non-linear process is tested for set point tracking,disturbance rejection,un-modelled noise dynamics and uncertainties,which records robust performance towards stability.展开更多
We present an iterative linear quadratic regulator(ILQR) method for trajectory tracking control of a wheeled mobile robot system.The proposed scheme involves a kinematic model linearization technique,a global trajecto...We present an iterative linear quadratic regulator(ILQR) method for trajectory tracking control of a wheeled mobile robot system.The proposed scheme involves a kinematic model linearization technique,a global trajectory generation algorithm,and trajectory tracking controller design.A lattice planner,which searches over a 3D(x,y,θ) configuration space,is adopted to generate the global trajectory.The ILQR method is used to design a local trajectory tracking controller.The effectiveness of the proposed method is demonstrated in simulation and experiment with a significantly asymmetric differential drive robot.The performance of the local controller is analyzed and compared with that of the existing linear quadratic regulator(LQR) method.According to the experiments,the new controller improves the control sequences(v,ω) iteratively and produces slightly better results.Specifically,two trajectories,'S' and '8' courses,are followed with sufficient accuracy using the proposed controller.展开更多
Purpose The purpose of this paper is to study a new method to improve the performance of the magnet power supply in the experimental ring of HIRFL-CSR.Methods A hybrid genetic particle swarm optimization algorithm is ...Purpose The purpose of this paper is to study a new method to improve the performance of the magnet power supply in the experimental ring of HIRFL-CSR.Methods A hybrid genetic particle swarm optimization algorithm is introduced,and the algorithm is applied to the optimal design of the LQR controller of pulse width modulated power supply.The fitness function of hybrid genetic particle swarm optimization is a multi-objective function,which combined the current and voltage,so that the dynamic performance of the closed-loop system can be better.The hybrid genetic particle swarm algorithm is applied to determine LQR controlling matrices Q and R.Results The simulation results show that adoption of this method leads to good transient responses,and the computational time is shorter than in the traditional trial and error methods.Conclusions The results presented in this paper show that the proposed method is robust,efficient and feasible,and the dynamic and static performance of the accelerator PWM power supply has been considerably improved.展开更多
The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the syst...The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the system. In order to avoid power system collapse, load shedding (LS) schemes are adopted with the optimal amount of load shed. This paper proposed a methodology in a two-area thermal-thermal system for finding the required amount of load to be shed for setting the frequency of the system within minimum allowable limits. The LS steps have been obtained based on the rate of change of frequency with the increase in load in steps. A systematic study has been conducted for three scenarios: the scheme with a conventional integral controller; the scheme with a linear quadratic regulator (LQR); and the scheme with an LQR and superconducting magnetic energy storage devices (SMES). A comparison of the results has been presented on the two-area system.展开更多
This paper discusses the data-driven design of linear quadratic regulators,i.e.,to obtain the regulators directly from experimental data without using the models of plants.In particular,we aim to improve an existing d...This paper discusses the data-driven design of linear quadratic regulators,i.e.,to obtain the regulators directly from experimental data without using the models of plants.In particular,we aim to improve an existing design method by reducing the amount of the required experimental data.Reducing the data amount leads to the cost reduction of experiments and computation for the data-driven design.We present a simplified version of the existing method,where parameters yielding the gain of the regulator are estimated from only part of the data required in the existing method.We then show that the data amount required in the presented method is less than half of that in the existing method under certain conditions.In addition,assuming the presence of measurement noise,we analyze the relations between the expectations and variances of the estimated parameters and the noise.As a result,it is shown that using a larger amount of the experimental data might mitigate the effects of the noise on the estimated parameters.These results are verified by numerical examples.展开更多
This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is...This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.展开更多
DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately por...DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.展开更多
In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communic...In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.展开更多
The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Des...The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.展开更多
The Robogymnast is a highly complex,three-link system based on the triple-inverted pendulum and is modelled on the human example of a gymnast suspended by their hands from the high bar and executing larger and larger ...The Robogymnast is a highly complex,three-link system based on the triple-inverted pendulum and is modelled on the human example of a gymnast suspended by their hands from the high bar and executing larger and larger upswings to eventually rotate fully.The links of the Robogymnast correspond respectively to the arms,trunk,and lower limbs of the gymnast,and from its three joints,one is under passive operation,while the remaining two are powered.The passive top joint poses severe challenges in attaining the smooth movement control needed to operate the Robogymnast effectively.This study assesses four types of controllers used for systems operation and identifies how far response stabilisation is achieved with each.The system is simulated using MATLAB Simulink,with findings generated regarding rising and settling time,as well as overshoot.The research primarily seeks to exam-ine the application of a linear quadratic regulator controller,proportional-integral-derivative controller,fuzzy linear quadratic regulator controller and linear quadratic regulator-proportional-integral-derivative controller for this type of system and comparisons between the different controllers to demon-strate successful performance,which highlights the claimed advantages of the proposed system.展开更多
Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliab...Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.展开更多
The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of free...The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.展开更多
With the strong battlefield application environment of the next generation fighter,based on the design of distributed vehicle management system,a fault diagnosis and fault-tolerant control(FTC)method for wing surface ...With the strong battlefield application environment of the next generation fighter,based on the design of distributed vehicle management system,a fault diagnosis and fault-tolerant control(FTC)method for wing surface damage is proposed in this paper.Aiming at three kinds of wing damage modes,this paper proposes a diagnosis method based on the fault decision tree and forms a fault decision tree for wing damage from the aspects of sample database construction,feature parameter extraction,and fault decision tree construction.Based on the fault diagnosis results,the longitudinal control law based on dynamic inverse and the lateral-directional robust control laws based on linear quadratic regulator(LQR)are proposed.From the simulation examples,the fault diagnosis algorithm based on the decision tree can complete the judgment of three wing surface damage modes within 2 ms,and the FTC law can make the fighter quickly return to a stable flight state after a short transient of 1 s,which achieves the fault-tolerant goal.展开更多
This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint...This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator(LQR), linear quadratic Gaussian control(LQG), H_2 control and H_∞ control. Simulation is performed for all the approaches yielding good performance results.展开更多
The current literature lacks uniform calculation methods for following trajectory control for autonomous vehicles,including the calculation of errors,determination of tracking points,and design of feedforward controll...The current literature lacks uniform calculation methods for following trajectory control for autonomous vehicles,including the calculation of errors,determination of tracking points,and design of feedforward controllers.Hence,a complete calculation method is proposed to address this gap.First,a control equation in the form of an error is obtained according to the dynamic equation of the vehicle coordinate system and the trajectory following model.Secondly,the deviation of the vehicle state is obtained according to the current vehicle s state and the following control model.Finally,a linear quadratic regulator(LQR)controller with feedforward control is designed according to the characteristics of the dynamic equation.With the proposed LQR,the simulation of computational time,anti-interference,and reliability analysis of the trajectory following control is performed by programming using MATLAB.The simulation outcomes are then compared with the experimental results from the literature.The comparison indicates that the proposed complete calculation method is effective,reliable,and capable of achieving real-time and anti-interference following control performance.The simulation results with or without feedforward control show that the steady-state error is eliminated and that good control performance is obtained by introducing feedforward control.展开更多
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu...Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.展开更多
The main objective of this research is to design a state-feedback controller for the rotary inverted pendulum module utilizing the linear quadratic regulator(LQR)technique.The controller maintains the pendulum in the ...The main objective of this research is to design a state-feedback controller for the rotary inverted pendulum module utilizing the linear quadratic regulator(LQR)technique.The controller maintains the pendulum in the inverted(upright)position and is robust enough to reject external disturbance to maintain its stability.The research work involves three major contributions:mathematical modeling,simulation,and real-time implementation.To design a controller,mathematical modeling has been done by employing the NewtonEuler,Lagrange method.The resulting model was nonlinear so linearization was required,which has been done around a working point.For the estimation of the controller parameters,MATLAB LQR function has been utilized.Simulation has been performed for the designed controller and it also has been implemented and tested over the real inverted pendulum.From the results,it is vivid that the designed controller keeps the inverted pendulum in an upright position and rejects the disturbances and falling under gravitational force by adjusting the rotation of the horizontal link.展开更多
The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local a...The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local approximation.The LQR is an excellent method for developing a controller for nonlinear systems.It provides optimal feedback to make the closed-loop system robust and stable,rejecting external disturbances.Model-based optimal controller for a nonlinear system such as a rotatory inverted pendulum has not been designed and implemented using Newton-Euler,Lagrange method,and local approximation.Therefore,implementing LQR to an underactuated nonlinear system was vital to design a stable controller.A mathematical model has been developed for the controller design by utilizing the Newton-Euler,Lagrange method.The nonlinear model has been linearized around an equilibrium point.Linear and nonlinear models have been compared to find the range in which linear and nonlinear models’behaviour is similar.MATLAB LQR function and system dynamics have been used to estimate the controller parameters.For the performance evaluation of the designed controller,Simulink has been used.Linear and nonlinear models have been simulated along with the designed controller.Simulations have been performed for the designed controller over the linear and nonlinear system under different conditions through varying system variables.The results show that the system is stable and robust enough to act against external disturbances.The controller maintains the rotary inverted pendulum in an upright position and rejects disruptions like falling under gravitational force or any external disturbance by adjusting the rotation of the horizontal link in both linear and nonlinear environments in a specific range.The controller has been practically designed and implemented.It is vivid from the results that the controller is robust enough to reject the disturbances in milliseconds and keeps the pendulum arm deflection angle to zero degrees.展开更多
Linear Quadratic Regulator (LQR) is modem linear control that is suitable for multivariable state feedback and is known to yield good performance for linear systems or for nonlinear systems where the nonlinear aspec...Linear Quadratic Regulator (LQR) is modem linear control that is suitable for multivariable state feedback and is known to yield good performance for linear systems or for nonlinear systems where the nonlinear aspects are presented. The fuzzy control is known to have the ability to deal with nonlinearities without having to use advanced mathematics. The LQR integrated fuzzy control (LQRIFC) simultaneously makes use of the good performance of LQR in the region close to switching curve, and the effectiveness of fuzzy control in region away from switching curve. A new analysis of the fuzzy system behavior presented helps to make possible precise integration of LQR features into fuzzy control. The LQRIFC is verified by simulation to suppress the uncertainty instability more effectively than the LQR besides minimizing the time of the mission proposed.展开更多
文摘Double cost function linear quadratic regulator (DLQR) is developed from LQR theory to solve an optimal control problem with a general nonlinear cost function. In addition to the traditional LQ cost function, another free form cost function was introduced to express the physical need plainly and optimize weights of LQ cost function using the search algorithms. As an instance, DLQR was applied in determining the control input in the front steering angle compensation control (FSAC) model for heavy duty vehicles. The brief simulations show that DLQR is powerful enough to specify the engineering requirements correctly and balance many factors effectively. The concept and applicable field of LQR are expanded by DLQR to optimize the system with a free form cost function.
文摘This paper deals with Furuta Pendulum(FP)or Rotary Inverted Pendulum(RIP),which is an under-actuated non-minimum unstable non-linear process.The process considered along with uncertainties which are unmodelled and analyses the performance of Linear Quadratic Regulator(LQR)with Kalman filter and H∞filter as two filter configurations.The LQR is a technique for developing practical feedback,in addition the desired x shows the vector of desirable states and is used as the external input to the closed-loop system.The effectiveness of the two filters in FP or RIP are measured and contrasted with rise time,peak time,settling time and maximum peak overshoot for time domain performance.The filters are also tested with gain margin,phase margin,disk stability margins for frequency domain performance and worst case stability margins for performance due to uncertainties.The H-infinity filter reduces the estimate error to a minimum,making it resilient in the worst case than the standard Kalman filter.Further,when theβrestriction value lowers,the H∞filter becomes more robust.The worst case gain performance is also focused for the two filter configurations and tested where H∞filter is found to outperform towards robust stability and performance.Also the switchover between the two filters is dependent upon a user-specified co-efficient that gives the flexibility in the design of non-linear systems.The non-linear process is tested for set point tracking,disturbance rejection,un-modelled noise dynamics and uncertainties,which records robust performance towards stability.
基金Project (Nos. 90920304 and 91120015) supported by the National Natural Science Foundation of China
文摘We present an iterative linear quadratic regulator(ILQR) method for trajectory tracking control of a wheeled mobile robot system.The proposed scheme involves a kinematic model linearization technique,a global trajectory generation algorithm,and trajectory tracking controller design.A lattice planner,which searches over a 3D(x,y,θ) configuration space,is adopted to generate the global trajectory.The ILQR method is used to design a local trajectory tracking controller.The effectiveness of the proposed method is demonstrated in simulation and experiment with a significantly asymmetric differential drive robot.The performance of the local controller is analyzed and compared with that of the existing linear quadratic regulator(LQR) method.According to the experiments,the new controller improves the control sequences(v,ω) iteratively and produces slightly better results.Specifically,two trajectories,'S' and '8' courses,are followed with sufficient accuracy using the proposed controller.
文摘Purpose The purpose of this paper is to study a new method to improve the performance of the magnet power supply in the experimental ring of HIRFL-CSR.Methods A hybrid genetic particle swarm optimization algorithm is introduced,and the algorithm is applied to the optimal design of the LQR controller of pulse width modulated power supply.The fitness function of hybrid genetic particle swarm optimization is a multi-objective function,which combined the current and voltage,so that the dynamic performance of the closed-loop system can be better.The hybrid genetic particle swarm algorithm is applied to determine LQR controlling matrices Q and R.Results The simulation results show that adoption of this method leads to good transient responses,and the computational time is shorter than in the traditional trial and error methods.Conclusions The results presented in this paper show that the proposed method is robust,efficient and feasible,and the dynamic and static performance of the accelerator PWM power supply has been considerably improved.
文摘The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the system. In order to avoid power system collapse, load shedding (LS) schemes are adopted with the optimal amount of load shed. This paper proposed a methodology in a two-area thermal-thermal system for finding the required amount of load to be shed for setting the frequency of the system within minimum allowable limits. The LS steps have been obtained based on the rate of change of frequency with the increase in load in steps. A systematic study has been conducted for three scenarios: the scheme with a conventional integral controller; the scheme with a linear quadratic regulator (LQR); and the scheme with an LQR and superconducting magnetic energy storage devices (SMES). A comparison of the results has been presented on the two-area system.
文摘This paper discusses the data-driven design of linear quadratic regulators,i.e.,to obtain the regulators directly from experimental data without using the models of plants.In particular,we aim to improve an existing design method by reducing the amount of the required experimental data.Reducing the data amount leads to the cost reduction of experiments and computation for the data-driven design.We present a simplified version of the existing method,where parameters yielding the gain of the regulator are estimated from only part of the data required in the existing method.We then show that the data amount required in the presented method is less than half of that in the existing method under certain conditions.In addition,assuming the presence of measurement noise,we analyze the relations between the expectations and variances of the estimated parameters and the noise.As a result,it is shown that using a larger amount of the experimental data might mitigate the effects of the noise on the estimated parameters.These results are verified by numerical examples.
基金Dean Research&Consultancy under Grant No.Dean (R&C)/2020-21/1155。
文摘This study presents a neural network-based model for predicting linear quadratic regulator(LQR)weighting matrices for achieving a target response reduction.Based on the expected weighting matrices,the LQR algorithm is used to determine the various responses of the structure.The responses are determined by numerically analyzing the governing equation of motion using the state-space approach.For training a neural network,four input parameters are considered:the time history of the ground motion,the percentage reduction in lateral displacement,lateral velocity,and lateral acceleration,Output parameters are LQR weighting matrices.To study the effectiveness of an LQR-based neural network(LQRNN),the actual percentage reduction in the responses obtained from using LQRNN is compared with the target percentage reductions.Furthermore,to investigate the efficacy of an active control system using LQRNN,the controlled responses of a system are compared to the corresponding uncontrolled responses.The trained neural network effectively predicts weighting parameters that can provide a percentage reduction in displacement,velocity,and acceleration close to the target percentage reduction.Based on the simulation study,it can be concluded that significant response reductions are observed in the active-controlled system using LQRNN.Moreover,the LQRNN algorithm can replace conventional LQR control with the use of an active control system.
基金supported in part by the National Natural Science Foundation of China(62173255, 62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems,(ZDSYS20220330161800001)。
文摘DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 62341110, Grant U22A2002, and Grant 62025110in part by the Suzhou Science and Technology Project
文摘In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.
基金supported in part by the Youth Foundation of China University of Petroleum-Beijing at Karamay(under Grant No.XQZX20230038)the Karamay Innovative Talents Program(under Grant No.20212022HJCXRC0005).
文摘The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.
文摘The Robogymnast is a highly complex,three-link system based on the triple-inverted pendulum and is modelled on the human example of a gymnast suspended by their hands from the high bar and executing larger and larger upswings to eventually rotate fully.The links of the Robogymnast correspond respectively to the arms,trunk,and lower limbs of the gymnast,and from its three joints,one is under passive operation,while the remaining two are powered.The passive top joint poses severe challenges in attaining the smooth movement control needed to operate the Robogymnast effectively.This study assesses four types of controllers used for systems operation and identifies how far response stabilisation is achieved with each.The system is simulated using MATLAB Simulink,with findings generated regarding rising and settling time,as well as overshoot.The research primarily seeks to exam-ine the application of a linear quadratic regulator controller,proportional-integral-derivative controller,fuzzy linear quadratic regulator controller and linear quadratic regulator-proportional-integral-derivative controller for this type of system and comparisons between the different controllers to demon-strate successful performance,which highlights the claimed advantages of the proposed system.
基金supported by the National Natural Science Foundation of China(51175510)
文摘Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.
基金Project(LZ2015022)supported by Educational Commission of Liaoning Province of ChinaProjects(51138001,51178081)supported by the National Natural Science Foundation of China+1 种基金Project(2013CB035905)supported by the Basic Research Program of ChinaProjects(DUT15LK34,DUT14QY10)supported by Fundamental Research Funds for the Central Universities,China
文摘The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.
基金This work was supported by the Defense Industrial Technology Development Program(JCKY2016205C013).
文摘With the strong battlefield application environment of the next generation fighter,based on the design of distributed vehicle management system,a fault diagnosis and fault-tolerant control(FTC)method for wing surface damage is proposed in this paper.Aiming at three kinds of wing damage modes,this paper proposes a diagnosis method based on the fault decision tree and forms a fault decision tree for wing damage from the aspects of sample database construction,feature parameter extraction,and fault decision tree construction.Based on the fault diagnosis results,the longitudinal control law based on dynamic inverse and the lateral-directional robust control laws based on linear quadratic regulator(LQR)are proposed.From the simulation examples,the fault diagnosis algorithm based on the decision tree can complete the judgment of three wing surface damage modes within 2 ms,and the FTC law can make the fighter quickly return to a stable flight state after a short transient of 1 s,which achieves the fault-tolerant goal.
基金supported by the Deanship of Scientific Research(DSR)at the King Fahd University of Petroleum and Minerals(KFUPM)(141048)
文摘This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator(LQR), linear quadratic Gaussian control(LQG), H_2 control and H_∞ control. Simulation is performed for all the approaches yielding good performance results.
基金The National Key Research and Development Program of China(No.2019YFB2006404)Guangxi Science and Technology Major Project(No.GUIKE AA18242036,No.GUIKE AA18242037).
文摘The current literature lacks uniform calculation methods for following trajectory control for autonomous vehicles,including the calculation of errors,determination of tracking points,and design of feedforward controllers.Hence,a complete calculation method is proposed to address this gap.First,a control equation in the form of an error is obtained according to the dynamic equation of the vehicle coordinate system and the trajectory following model.Secondly,the deviation of the vehicle state is obtained according to the current vehicle s state and the following control model.Finally,a linear quadratic regulator(LQR)controller with feedforward control is designed according to the characteristics of the dynamic equation.With the proposed LQR,the simulation of computational time,anti-interference,and reliability analysis of the trajectory following control is performed by programming using MATLAB.The simulation outcomes are then compared with the experimental results from the literature.The comparison indicates that the proposed complete calculation method is effective,reliable,and capable of achieving real-time and anti-interference following control performance.The simulation results with or without feedforward control show that the steady-state error is eliminated and that good control performance is obtained by introducing feedforward control.
基金Project(JCYJ20190808175801656)supported by the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2021M691427)supported by Postdoctoral Science Foundation of ChinaProject(9680086)supported by the City University of Hong Kong,China。
文摘Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.
文摘The main objective of this research is to design a state-feedback controller for the rotary inverted pendulum module utilizing the linear quadratic regulator(LQR)technique.The controller maintains the pendulum in the inverted(upright)position and is robust enough to reject external disturbance to maintain its stability.The research work involves three major contributions:mathematical modeling,simulation,and real-time implementation.To design a controller,mathematical modeling has been done by employing the NewtonEuler,Lagrange method.The resulting model was nonlinear so linearization was required,which has been done around a working point.For the estimation of the controller parameters,MATLAB LQR function has been utilized.Simulation has been performed for the designed controller and it also has been implemented and tested over the real inverted pendulum.From the results,it is vivid that the designed controller keeps the inverted pendulum in an upright position and rejects the disturbances and falling under gravitational force by adjusting the rotation of the horizontal link.
文摘The main idea behind the present research is to design a state-feedback controller for an underactuated nonlinear rotary inverted pendulum module by employing the linear quadratic regulator(LQR)technique using local approximation.The LQR is an excellent method for developing a controller for nonlinear systems.It provides optimal feedback to make the closed-loop system robust and stable,rejecting external disturbances.Model-based optimal controller for a nonlinear system such as a rotatory inverted pendulum has not been designed and implemented using Newton-Euler,Lagrange method,and local approximation.Therefore,implementing LQR to an underactuated nonlinear system was vital to design a stable controller.A mathematical model has been developed for the controller design by utilizing the Newton-Euler,Lagrange method.The nonlinear model has been linearized around an equilibrium point.Linear and nonlinear models have been compared to find the range in which linear and nonlinear models’behaviour is similar.MATLAB LQR function and system dynamics have been used to estimate the controller parameters.For the performance evaluation of the designed controller,Simulink has been used.Linear and nonlinear models have been simulated along with the designed controller.Simulations have been performed for the designed controller over the linear and nonlinear system under different conditions through varying system variables.The results show that the system is stable and robust enough to act against external disturbances.The controller maintains the rotary inverted pendulum in an upright position and rejects disruptions like falling under gravitational force or any external disturbance by adjusting the rotation of the horizontal link in both linear and nonlinear environments in a specific range.The controller has been practically designed and implemented.It is vivid from the results that the controller is robust enough to reject the disturbances in milliseconds and keeps the pendulum arm deflection angle to zero degrees.
文摘Linear Quadratic Regulator (LQR) is modem linear control that is suitable for multivariable state feedback and is known to yield good performance for linear systems or for nonlinear systems where the nonlinear aspects are presented. The fuzzy control is known to have the ability to deal with nonlinearities without having to use advanced mathematics. The LQR integrated fuzzy control (LQRIFC) simultaneously makes use of the good performance of LQR in the region close to switching curve, and the effectiveness of fuzzy control in region away from switching curve. A new analysis of the fuzzy system behavior presented helps to make possible precise integration of LQR features into fuzzy control. The LQRIFC is verified by simulation to suppress the uncertainty instability more effectively than the LQR besides minimizing the time of the mission proposed.