To continue the discussion in (Ⅰ ) and ( Ⅱ ),and finish the study of the limit cycle problem for quadratic system ( Ⅲ )m=0 in this paper. Since there is at most one limit cycle that may be created from critic...To continue the discussion in (Ⅰ ) and ( Ⅱ ),and finish the study of the limit cycle problem for quadratic system ( Ⅲ )m=0 in this paper. Since there is at most one limit cycle that may be created from critical point O by Hopf bifurcation,the number of limit cycles depends on the different situations of separatrix cycle to be formed around O. If it is a homoclinic cycle passing through saddle S1 on 1 +ax-y = 0,which has the same stability with the limit cycle created by Hopf bifurcation,then the uniqueness of limit cycles in such cases can be proved. If it is a homoclinic cycle passing through saddle N on x= 0,which has the different stability from the limit cycle created by Hopf bifurcation,then it will be a case of two limit cycles. For the case when the separatrix cycle is a heteroclinic cycle passing through two saddles at infinity,the discussion of the paper shows that the number of limit cycles will change from one to two depending on the different values of parameters of system.展开更多
In this paper, (a) we rerise Theorem 2 of Ref [1] omit the condition V_7>0 .(b) we discuss the relative positions of six curves M(s ̄2, r)=0, J( s ̄2, r)=0, L(s ̄2,r)=0, T(s ̄2,r)=0, Under the condition of the (1.3...In this paper, (a) we rerise Theorem 2 of Ref [1] omit the condition V_7>0 .(b) we discuss the relative positions of six curves M(s ̄2, r)=0, J( s ̄2, r)=0, L(s ̄2,r)=0, T(s ̄2,r)=0, Under the condition of the (1.3) distri-butions of limit cycles, we expand the variable regions of parameters ( s , r) and clearly. show them in figure, (c) we study the (1, 3) distributions of limit cycles of one kind quadratic systems with two singular points at the infinite: and (d) we give a generalmethod to discuss the ( 1 ,3) distibutions`of limit cycles of system (1.1) whatever there isone, two or three singular points at the infinite.展开更多
The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equa...The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equations, 2003,19(3):397-401) are corrected. By translating the system to be considered into the Lienard type and by using some related properties, we obtain several theorems with suitable conditions coefficients of the system, under which we prove that the system has at most two limit cycles. The conclusions improve the results given in Suo and Yue's paper mentioned above.展开更多
It is proved that the quadratic system with a weak focus and a strong focus has at most one limit cycle around the strong focus, and as the weak focus is a 2nd order(or 3rd order) weak focus the quadratic system ha...It is proved that the quadratic system with a weak focus and a strong focus has at most one limit cycle around the strong focus, and as the weak focus is a 2nd order(or 3rd order) weak focus the quadratic system has at most two(one) limit cycles which have (1,1) distribution ((0,1) distribution).展开更多
On the basis of[2—4], we only need to consider the case of n≠0. Without loss of generality, we can assume n=1, a】0. Hence the system(1)<sub>n,0</sub> can be written as(1)<sub>1,0</sub>
In §1 and §3, two conjectures mentioned by Ye Yanqian are studied. In §2, by use of elementary methods the author proves some non-existence theorems of limit cycles (LC, for abbreviation) for quadrat...In §1 and §3, two conjectures mentioned by Ye Yanqian are studied. In §2, by use of elementary methods the author proves some non-existence theorems of limit cycles (LC, for abbreviation) for quadratic differential systems obtained recently by H.Giacomini, J. Llibre and M. Viano.展开更多
We transform the quadratic system into the special system of Type (Ⅲ)a=0' and hence a string sufficient conditions are established to ensure that the considered system has at most one limit cycle.
It is proved that the quadratic system with a weak saddle has at most one limit cycle,and that if this system has a separatrix cycle passing through the weak saddle,then the stability of the separatrix cycle is contra...It is proved that the quadratic system with a weak saddle has at most one limit cycle,and that if this system has a separatrix cycle passing through the weak saddle,then the stability of the separatrix cycle is contrary to that of the singular point surrounded by it.展开更多
This paper is concerned with a cubic Kolmogorov system with a solution of central quadratic curve which neither contacts with the coordinate axes, nor passes through the origin. The conclusion is that such a system ma...This paper is concerned with a cubic Kolmogorov system with a solution of central quadratic curve which neither contacts with the coordinate axes, nor passes through the origin. The conclusion is that such a system may possess limit cycles.展开更多
In this note, we prove that the quadratic system having a parabola as its integralcurve has at most one limit cycle, and therefore the quadratic system havingquadratic curve as its integral curve has at most one limjt...In this note, we prove that the quadratic system having a parabola as its integralcurve has at most one limit cycle, and therefore the quadratic system havingquadratic curve as its integral curve has at most one limjt cycle. Considering Ref.[1], we have solved completely the problem of the bifurcations of limit cycle forsystem (1).展开更多
IN ref.[1]of § 20,Ye Yanqian has investigated the impossibility of(2,2)distribution of lim-it cycles of quadratic systems,where the footnote 1)on p.553 gives the following conjecture:The quadratic system(Ⅲ)&...IN ref.[1]of § 20,Ye Yanqian has investigated the impossibility of(2,2)distribution of lim-it cycles of quadratic systems,where the footnote 1)on p.553 gives the following conjecture:The quadratic system(Ⅲ)<sub>m=0</sub>展开更多
Without loss of generality, the quadratic system (Ⅱ)<sub>m=0</sub> can be assumed as follows:Generally, system (1) has four singular points, focus (node) 0(0,0), R(-1/a,y<sub>2</sub>...Without loss of generality, the quadratic system (Ⅱ)<sub>m=0</sub> can be assumed as follows:Generally, system (1) has four singular points, focus (node) 0(0,0), R(-1/a,y<sub>2</sub>), saddle N(0, 1), M(-1/a,y<sub>1</sub>), where y<sub>1, 2</sub>=[a±(a<sup>2</sup>-4(l-aδ))<sup>1/2</sup>]/2a.展开更多
A conjecture on the non-existence of limit cycles for the quadratic differential system (1) under conditions (2) and iv) of (3) is discussed; interesting phenomena are revealed.
In this paper we will prove that limit cycles for the quadratic differential system (Ⅲ)l=n=o in Chinese classification are concentratedly distributed, and that the maximum number of limit cycles around O(0,0) is at l...In this paper we will prove that limit cycles for the quadratic differential system (Ⅲ)l=n=o in Chinese classification are concentratedly distributed, and that the maximum number of limit cycles around O(0,0) is at least two.展开更多
As a continuation of,the author studies the limit cycle bifurcation around the focus S_(1)other than O(0,0)for the system(1)asδvaries.A conjecture on the mon-existence of limit cycles around S_(1),and another one on ...As a continuation of,the author studies the limit cycle bifurcation around the focus S_(1)other than O(0,0)for the system(1)asδvaries.A conjecture on the mon-existence of limit cycles around S_(1),and another one on the non-coexistence of limit cycles ariund both O and S_(1)are given,together with some numerical examples.展开更多
In this paper we give the necessary and sufficient conditions for all finite critical points of quadratic differential systems to be weak foci, and solve an open problem proposed by Yanqian Ye.
This paper is concerned with small quadratic perturbations to one parameter family of generic reversible quadratic vector fields with a simple center. The first objective is to show that this system exhibits two small...This paper is concerned with small quadratic perturbations to one parameter family of generic reversible quadratic vector fields with a simple center. The first objective is to show that this system exhibits two small amplitude limit cycles emerging from a Hopf bifurcation. The second one we prove that the system has no limit cycle around the weak focus of order two. The results may be viewed as a contribution to proving the conjecture on cyclicity proposed by Iliev(1998).展开更多
In this paper, we discuss the Poincaré bifurcation for a class of quadratic systems with an unbounded triangular region and a center region. It is proved, by Poincaré bifurcation, that inside the center regi...In this paper, we discuss the Poincaré bifurcation for a class of quadratic systems with an unbounded triangular region and a center region. It is proved, by Poincaré bifurcation, that inside the center region quadratic system perturbed by quadratic polynomial perturbation may generate three limit cycles.展开更多
In this paper, we prove that a planar quadratic systems with a 3rd-order weak focus has at most one limit cycle, and a planar quadratic system with a 2nd-order weak focus has at most two limit cycles.
基金Project supported by the National Natural Science Foundation of China (10471066).
文摘To continue the discussion in (Ⅰ ) and ( Ⅱ ),and finish the study of the limit cycle problem for quadratic system ( Ⅲ )m=0 in this paper. Since there is at most one limit cycle that may be created from critical point O by Hopf bifurcation,the number of limit cycles depends on the different situations of separatrix cycle to be formed around O. If it is a homoclinic cycle passing through saddle S1 on 1 +ax-y = 0,which has the same stability with the limit cycle created by Hopf bifurcation,then the uniqueness of limit cycles in such cases can be proved. If it is a homoclinic cycle passing through saddle N on x= 0,which has the different stability from the limit cycle created by Hopf bifurcation,then it will be a case of two limit cycles. For the case when the separatrix cycle is a heteroclinic cycle passing through two saddles at infinity,the discussion of the paper shows that the number of limit cycles will change from one to two depending on the different values of parameters of system.
文摘In this paper, (a) we rerise Theorem 2 of Ref [1] omit the condition V_7>0 .(b) we discuss the relative positions of six curves M(s ̄2, r)=0, J( s ̄2, r)=0, L(s ̄2,r)=0, T(s ̄2,r)=0, Under the condition of the (1.3) distri-butions of limit cycles, we expand the variable regions of parameters ( s , r) and clearly. show them in figure, (c) we study the (1, 3) distributions of limit cycles of one kind quadratic systems with two singular points at the infinite: and (d) we give a generalmethod to discuss the ( 1 ,3) distibutions`of limit cycles of system (1.1) whatever there isone, two or three singular points at the infinite.
文摘The maximal number of limit cycles for a particular type Ⅲ system x = -y + lx2 + mxy, y =x(1 + ax + by) is studied and some errors that appeared in the paper by Suo Mingxia and Yue Xiting (Annals of Differential Equations, 2003,19(3):397-401) are corrected. By translating the system to be considered into the Lienard type and by using some related properties, we obtain several theorems with suitable conditions coefficients of the system, under which we prove that the system has at most two limit cycles. The conclusions improve the results given in Suo and Yue's paper mentioned above.
文摘It is proved that the quadratic system with a weak focus and a strong focus has at most one limit cycle around the strong focus, and as the weak focus is a 2nd order(or 3rd order) weak focus the quadratic system has at most two(one) limit cycles which have (1,1) distribution ((0,1) distribution).
基金Project supported by the National Natural Science Foundation of China
文摘On the basis of[2—4], we only need to consider the case of n≠0. Without loss of generality, we can assume n=1, a】0. Hence the system(1)<sub>n,0</sub> can be written as(1)<sub>1,0</sub>
文摘In §1 and §3, two conjectures mentioned by Ye Yanqian are studied. In §2, by use of elementary methods the author proves some non-existence theorems of limit cycles (LC, for abbreviation) for quadratic differential systems obtained recently by H.Giacomini, J. Llibre and M. Viano.
文摘We transform the quadratic system into the special system of Type (Ⅲ)a=0' and hence a string sufficient conditions are established to ensure that the considered system has at most one limit cycle.
文摘It is proved that the quadratic system with a weak saddle has at most one limit cycle,and that if this system has a separatrix cycle passing through the weak saddle,then the stability of the separatrix cycle is contrary to that of the singular point surrounded by it.
基金The NSF of Liaoning provinceFoundation of returned doctors and Foundation of LiaoningEducation Committee.
文摘This paper is concerned with a cubic Kolmogorov system with a solution of central quadratic curve which neither contacts with the coordinate axes, nor passes through the origin. The conclusion is that such a system may possess limit cycles.
基金Project supported by Fujian Provincial Natural Science Foundation the National Natural Science Foundation of China.
文摘In this note, we prove that the quadratic system having a parabola as its integralcurve has at most one limit cycle, and therefore the quadratic system havingquadratic curve as its integral curve has at most one limjt cycle. Considering Ref.[1], we have solved completely the problem of the bifurcations of limit cycle forsystem (1).
文摘IN ref.[1]of § 20,Ye Yanqian has investigated the impossibility of(2,2)distribution of lim-it cycles of quadratic systems,where the footnote 1)on p.553 gives the following conjecture:The quadratic system(Ⅲ)<sub>m=0</sub>
基金Project supported by the National Natural Science Foundation of China
文摘Without loss of generality, the quadratic system (Ⅱ)<sub>m=0</sub> can be assumed as follows:Generally, system (1) has four singular points, focus (node) 0(0,0), R(-1/a,y<sub>2</sub>), saddle N(0, 1), M(-1/a,y<sub>1</sub>), where y<sub>1, 2</sub>=[a±(a<sup>2</sup>-4(l-aδ))<sup>1/2</sup>]/2a.
基金the National Natural Science Foundation of China.
文摘A conjecture on the non-existence of limit cycles for the quadratic differential system (1) under conditions (2) and iv) of (3) is discussed; interesting phenomena are revealed.
文摘In this paper we will prove that limit cycles for the quadratic differential system (Ⅲ)l=n=o in Chinese classification are concentratedly distributed, and that the maximum number of limit cycles around O(0,0) is at least two.
文摘As a continuation of,the author studies the limit cycle bifurcation around the focus S_(1)other than O(0,0)for the system(1)asδvaries.A conjecture on the mon-existence of limit cycles around S_(1),and another one on the non-coexistence of limit cycles ariund both O and S_(1)are given,together with some numerical examples.
基金The project is partially supported by the National Natural Foundation of China with the grant number 10901013.
文摘In this paper we give the necessary and sufficient conditions for all finite critical points of quadratic differential systems to be weak foci, and solve an open problem proposed by Yanqian Ye.
基金Supported by the National Natural Science Foundations of China(Grant No.11601385)
文摘This paper is concerned with small quadratic perturbations to one parameter family of generic reversible quadratic vector fields with a simple center. The first objective is to show that this system exhibits two small amplitude limit cycles emerging from a Hopf bifurcation. The second one we prove that the system has no limit cycle around the weak focus of order two. The results may be viewed as a contribution to proving the conjecture on cyclicity proposed by Iliev(1998).
基金Supported by NSF and RFDP of China and China Postdoctoral Science Foundation (No.10471014).
文摘In this paper, we discuss the Poincaré bifurcation for a class of quadratic systems with an unbounded triangular region and a center region. It is proved, by Poincaré bifurcation, that inside the center region quadratic system perturbed by quadratic polynomial perturbation may generate three limit cycles.
基金Supported by the National Natural Science Foundation of China (19671071).
文摘In this paper, we prove that a planar quadratic systems with a 3rd-order weak focus has at most one limit cycle, and a planar quadratic system with a 2nd-order weak focus has at most two limit cycles.