The goal here is to give a simple approach to a quadrature formula based on the divided diffierences of the integrand at the zeros of the nth Chebyshev polynomial of the first kind,and those of the(n-1)st Chebyshev po...The goal here is to give a simple approach to a quadrature formula based on the divided diffierences of the integrand at the zeros of the nth Chebyshev polynomial of the first kind,and those of the(n-1)st Chebyshev polynomial of the second kind.Explicit expressions for the corresponding coefficients of the quadrature rule are also found after expansions of the divided diffierences,which was proposed in[14].展开更多
In this paper, three types of three-parameters families of quadrature formulas for the Riemann’s integral on an interval of the real line are carefully studied. This research is a continuation of the results in the [...In this paper, three types of three-parameters families of quadrature formulas for the Riemann’s integral on an interval of the real line are carefully studied. This research is a continuation of the results in the [1]-[3]. All these quadrature formulas are not based on the integration of an interpolant as so as the Gregory rule, a well-known example in numerical quadrature of a trapezoidal rule with endpoint corrections of a given order (see [4]). In some natural restrictions on the parameters we construct the only one quadrature formula of the eight order which belongs to the first, second and third family. For functions whose 8th derivative is either always positive or always negative, we use these quadrature formulas to get good two-sided bound on . Additionally, we apply these quadratures to obtain the approximate sum of slowly convergent series , where .展开更多
Discusses an extremal problem with Birkhoff interpolation constraints. Quadrature formula derived from an extremal problem; Overview of auxiliary lemmas; Derivation of some properties of polynomials.
In the present paper some multi-dimensional quadrature formulas of periodic functions are established by means of the number-theoretic method.Some results of Hua and Wang are generalized or improved.
Explicit expressions of the Cotes numbers of the generalized Gaussian quadrature formulas for the Chebyshev nodes (of the first kind and the second kind) and their asymptotic behavior are given.
In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I (a,b), a function G E S(w)= (f: fxlf(x)lw(x)dx 〈 ∞ satisfying the ...In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I (a,b), a function G E S(w)= (f: fxlf(x)lw(x)dx 〈 ∞ satisfying the conditions G(2J)(x) :〉 O, x E (a,b), j = 0, 1 , and growing as fast as possible as x→ a- and x → b-, plays an important role. But to find such a function G is often difficult and complicated. This implies that to prove convergence of Gaussian quadrature formulas, it is enough to find a function G E S(w) with G ≥ 0 satisfying展开更多
Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also gi...Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.展开更多
We construct a quadrature formula of the singular integral with the Chebyshev weight of the second kind by using Lagrange interpolation based on the rational system {1/(x?a 1), 1/(x?a 2), …}, and both the remainder a...We construct a quadrature formula of the singular integral with the Chebyshev weight of the second kind by using Lagrange interpolation based on the rational system {1/(x?a 1), 1/(x?a 2), …}, and both the remainder and convergence of the quadrature formula established here are discussed. Our results extend some classical ones.展开更多
The purpose of this paper is to study the maximum trigonometric degree of the quadrature formula associated with m prescribed nodes and n unknown additional nodes in the interval(-π, π]. We show that for a fixed n,...The purpose of this paper is to study the maximum trigonometric degree of the quadrature formula associated with m prescribed nodes and n unknown additional nodes in the interval(-π, π]. We show that for a fixed n, the quadrature formulae with m and m + 1 prescribed nodes share the same maximum degree if m is odd. We also give necessary and sufficient conditions for all the additional nodes to be real, pairwise distinct and in the interval(-π, π] for even m, which can be obtained constructively. Some numerical examples are given by choosing the prescribed nodes to be the zeros of Chebyshev polynomials of the second kind or randomly for m ≥ 3.展开更多
In this paper,we study the optimal quadrature problem with Hermite-Birkhoff type,on the Sobolev class(R)defined on whole red axis,and we give an optimal algorithm and determite its optimal error.
We consider the computation of the. Cauchy principal value mtegral by quadrature formulaeof compound type, which are obtained by replacing f by a piecewise defined function F,[;]. The behaviour of the constants m the ...We consider the computation of the. Cauchy principal value mtegral by quadrature formulaeof compound type, which are obtained by replacing f by a piecewise defined function F,[;]. The behaviour of the constants m the estimates where quadrature error) is determined for fixed i and which means that not only the. order, but also the coefficient of the main term of is determined. The behaviour of these error constants is compared -with the corresponding ones obtained for the. method of subtraction of the singularity. As it turns out, these error constants have, in general, the same asymptotic behaviour.展开更多
The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a sw...The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a switched delay system, it is imperative to consider the effects of mixed-modes in the stability analysis for an NCS. In this paper, with the help of the interpolatory quadrature formula and the average dwell time method, stabilization of NCSs using a mixed-mode based switched delay system method is investigated based on a novel constructed Lyapunov-Krasovskii functional. With the Finsler's lemma, new exponential stabilizability conditions with less conservativeness are given for the NCS. Finally, an illustrative example is provided to verify the effectiveness of the developed results.展开更多
This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as ...This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L2 norm and L^∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.展开更多
In this article we use Chebyshev spectral collocation method to deal with the Volterra integral equation which has two kinds of delay items. We use linear transformation to make the interval into a fixed interval [-1,...In this article we use Chebyshev spectral collocation method to deal with the Volterra integral equation which has two kinds of delay items. We use linear transformation to make the interval into a fixed interval [-1, 1]. Then we use the Gauss quadrature formula to approximate the solution. With the help of lemmas, we get the result that the numerical error decay exponentially in the infinity norm and the Chebyshev weighted Hilbert space norm. Some numerical experiments are given to confirm our theoretical prediction.展开更多
In this paper, we examine the space discretization of time fractional telegraph equation (TFTE) with Mamadu-Njoseh orthogonal basis functions. For ease and convenience, we deal with the fractional derivative by first ...In this paper, we examine the space discretization of time fractional telegraph equation (TFTE) with Mamadu-Njoseh orthogonal basis functions. For ease and convenience, we deal with the fractional derivative by first converting from Caputo’s type to Riemann-Liouville’s type. The proposed method was constrained to precise error analysis to establish the accuracy of the method. Numerical experimentation was implemented with the aid of MAPLE 18 to show convergence of the method as compared with the analytic solution.展开更多
In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic co...In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods.展开更多
In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadratur...In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadrature while the problem of consideration is a linear problem. If IDEs are nonlinear or integral kernel is complicated, then quadrature rule is not most suitable;therefore, other types of methods are needed to develop. One of the suitable and effective method is homotopy analysis method (HAM) developed by Liao in 1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Equation (IEs) of Volterra-Fredholm type;then the standard HAM was applied. Gauss-Legendre quadrature formula was used for kernel integrations. Obtained system of algebraic equations was solved numerically. Moreover, numerical examples demonstrate the high accuracy of the proposed method. Comparisons with other methods are also provided. The results show that the proposed method is simple, effective and dominated other methods.展开更多
A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this ...A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this algebra system was solved by using relaxed Monte Carlo method with importance sampling and numerical approximation solutions of the integral equations system were achieved. It is theoretically proved that the validity of relaxed Monte Carlo method is based on importance sampling to solve the integral equations system. Finally, some numerical examples from literatures are given to show the efficiency of the method.展开更多
For β 〉 0 and an integer r 〉 2, denote by H∞,β those 2π-periodic, real-valued functions f on R, which are analytic in Sβ = {z ∈ C: [ImzI 〈β} and satisfy the restriction If(r)(z)[ ≤ 1, z ∈ Sβ. The opt...For β 〉 0 and an integer r 〉 2, denote by H∞,β those 2π-periodic, real-valued functions f on R, which are analytic in Sβ = {z ∈ C: [ImzI 〈β} and satisfy the restriction If(r)(z)[ ≤ 1, z ∈ Sβ. The optimal quadrature formulae about information composed of the values of a function and its kth (k : 1,..., r - 1) derivatives on free knots for the classes H∞,β are obtained, and the error estimates of the optimal quadrature formulae are exactly determined.展开更多
We propose a novel numerical approach for delay differential equations with vanishing proportional delays based on spectral methods. A Legendre-collocation method is employed to obtain highly accurate numerical approx...We propose a novel numerical approach for delay differential equations with vanishing proportional delays based on spectral methods. A Legendre-collocation method is employed to obtain highly accurate numerical approximations to the exact solution. It is proved theoretically and demonstrated numerically that the proposed method converges exponentially provided that the data in the are smooth. given pantograph delay differential equation展开更多
基金Supported by the National Natural Science Foundation of China(10571121) Supported by the Natural Science Foundation of Guangdong Province(5010509)
文摘The goal here is to give a simple approach to a quadrature formula based on the divided diffierences of the integrand at the zeros of the nth Chebyshev polynomial of the first kind,and those of the(n-1)st Chebyshev polynomial of the second kind.Explicit expressions for the corresponding coefficients of the quadrature rule are also found after expansions of the divided diffierences,which was proposed in[14].
文摘In this paper, three types of three-parameters families of quadrature formulas for the Riemann’s integral on an interval of the real line are carefully studied. This research is a continuation of the results in the [1]-[3]. All these quadrature formulas are not based on the integration of an interpolant as so as the Gregory rule, a well-known example in numerical quadrature of a trapezoidal rule with endpoint corrections of a given order (see [4]). In some natural restrictions on the parameters we construct the only one quadrature formula of the eight order which belongs to the first, second and third family. For functions whose 8th derivative is either always positive or always negative, we use these quadrature formulas to get good two-sided bound on . Additionally, we apply these quadratures to obtain the approximate sum of slowly convergent series , where .
文摘Discusses an extremal problem with Birkhoff interpolation constraints. Quadrature formula derived from an extremal problem; Overview of auxiliary lemmas; Derivation of some properties of polynomials.
基金This project is supported by the National Natural Science Foundation of China
文摘In the present paper some multi-dimensional quadrature formulas of periodic functions are established by means of the number-theoretic method.Some results of Hua and Wang are generalized or improved.
文摘Explicit expressions of the Cotes numbers of the generalized Gaussian quadrature formulas for the Chebyshev nodes (of the first kind and the second kind) and their asymptotic behavior are given.
基金Project supported by the National Natural Science Foundation of China (Nos. 11171100,10871065,11071064)the Hunan Provincial Natural Science Foundation of China (No. 10JJ3089)the Scientific Research Fund of Hunan Provincial Education Department (No. 11W012)
文摘In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I (a,b), a function G E S(w)= (f: fxlf(x)lw(x)dx 〈 ∞ satisfying the conditions G(2J)(x) :〉 O, x E (a,b), j = 0, 1 , and growing as fast as possible as x→ a- and x → b-, plays an important role. But to find such a function G is often difficult and complicated. This implies that to prove convergence of Gaussian quadrature formulas, it is enough to find a function G E S(w) with G ≥ 0 satisfying
基金Supported by NNSF and RFDP of Higher Education of China.
文摘Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.
文摘We construct a quadrature formula of the singular integral with the Chebyshev weight of the second kind by using Lagrange interpolation based on the rational system {1/(x?a 1), 1/(x?a 2), …}, and both the remainder and convergence of the quadrature formula established here are discussed. Our results extend some classical ones.
基金The NSF (61033012,10801023,10911140268 and 10771028) of China
文摘The purpose of this paper is to study the maximum trigonometric degree of the quadrature formula associated with m prescribed nodes and n unknown additional nodes in the interval(-π, π]. We show that for a fixed n, the quadrature formulae with m and m + 1 prescribed nodes share the same maximum degree if m is odd. We also give necessary and sufficient conditions for all the additional nodes to be real, pairwise distinct and in the interval(-π, π] for even m, which can be obtained constructively. Some numerical examples are given by choosing the prescribed nodes to be the zeros of Chebyshev polynomials of the second kind or randomly for m ≥ 3.
文摘In this paper,we study the optimal quadrature problem with Hermite-Birkhoff type,on the Sobolev class(R)defined on whole red axis,and we give an optimal algorithm and determite its optimal error.
文摘We consider the computation of the. Cauchy principal value mtegral by quadrature formulaeof compound type, which are obtained by replacing f by a piecewise defined function F,[;]. The behaviour of the constants m the estimates where quadrature error) is determined for fixed i and which means that not only the. order, but also the coefficient of the main term of is determined. The behaviour of these error constants is compared -with the corresponding ones obtained for the. method of subtraction of the singularity. As it turns out, these error constants have, in general, the same asymptotic behaviour.
基金supported by the National Natural Science Foundation of China(61573230,61473034,51777012)Beijing Nova Programme Interdisciplinary Cooperation Project(Z161100004916041)
文摘The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a switched delay system, it is imperative to consider the effects of mixed-modes in the stability analysis for an NCS. In this paper, with the help of the interpolatory quadrature formula and the average dwell time method, stabilization of NCSs using a mixed-mode based switched delay system method is investigated based on a novel constructed Lyapunov-Krasovskii functional. With the Finsler's lemma, new exponential stabilizability conditions with less conservativeness are given for the NCS. Finally, an illustrative example is provided to verify the effectiveness of the developed results.
基金supported by National Natural Science Foundation of China(11401347,91430104,11671157,61401255,11426193)Shandong Province Natural Science Foundation(ZR2014AP003)
文摘This paper is concerned with obtaining the approximate solution for Volterra- Hammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function w(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L2 norm and L^∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.
基金Supported by Guangdong Provincial Education Projects(2021KTSCX071,HSGDJG21356-372)Project of Hanshan Normal University(521036).
文摘In this article we use Chebyshev spectral collocation method to deal with the Volterra integral equation which has two kinds of delay items. We use linear transformation to make the interval into a fixed interval [-1, 1]. Then we use the Gauss quadrature formula to approximate the solution. With the help of lemmas, we get the result that the numerical error decay exponentially in the infinity norm and the Chebyshev weighted Hilbert space norm. Some numerical experiments are given to confirm our theoretical prediction.
文摘In this paper, we examine the space discretization of time fractional telegraph equation (TFTE) with Mamadu-Njoseh orthogonal basis functions. For ease and convenience, we deal with the fractional derivative by first converting from Caputo’s type to Riemann-Liouville’s type. The proposed method was constrained to precise error analysis to establish the accuracy of the method. Numerical experimentation was implemented with the aid of MAPLE 18 to show convergence of the method as compared with the analytic solution.
文摘In this paper, a group of Gauss-Legendre iterative methods with cubic convergence for solving nonlinear systems are proposed. We construct the iterative schemes based on Gauss-Legendre quadrature formula. The cubic convergence and error equation are proved theoretically, and demonstrated numerically. Several numerical examples for solving the system of nonlinear equations and boundary-value problems of nonlinear ordinary differential equations (ODEs) are provided to illustrate the efficiency and performance of the suggested iterative methods.
文摘In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadrature while the problem of consideration is a linear problem. If IDEs are nonlinear or integral kernel is complicated, then quadrature rule is not most suitable;therefore, other types of methods are needed to develop. One of the suitable and effective method is homotopy analysis method (HAM) developed by Liao in 1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Equation (IEs) of Volterra-Fredholm type;then the standard HAM was applied. Gauss-Legendre quadrature formula was used for kernel integrations. Obtained system of algebraic equations was solved numerically. Moreover, numerical examples demonstrate the high accuracy of the proposed method. Comparisons with other methods are also provided. The results show that the proposed method is simple, effective and dominated other methods.
文摘A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this algebra system was solved by using relaxed Monte Carlo method with importance sampling and numerical approximation solutions of the integral equations system were achieved. It is theoretically proved that the validity of relaxed Monte Carlo method is based on importance sampling to solve the integral equations system. Finally, some numerical examples from literatures are given to show the efficiency of the method.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10671019 and 10971251), National Natural Science Special-purpose Foundation of China (Grant No. 10826079) and Chinese Universities Scientific Fund (Grant No. 2009-2-05)
文摘For β 〉 0 and an integer r 〉 2, denote by H∞,β those 2π-periodic, real-valued functions f on R, which are analytic in Sβ = {z ∈ C: [ImzI 〈β} and satisfy the restriction If(r)(z)[ ≤ 1, z ∈ Sβ. The optimal quadrature formulae about information composed of the values of a function and its kth (k : 1,..., r - 1) derivatives on free knots for the classes H∞,β are obtained, and the error estimates of the optimal quadrature formulae are exactly determined.
基金The research of HB was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and by the Research Grants Council of Hong KongThe research of TT was supported by Hong Kong Baptist University,the Research Grants Council of Hong Kong and he was supported in part by the Chinese Academy of Sciences while visiting its Institute of Computational Mathematics.
文摘We propose a novel numerical approach for delay differential equations with vanishing proportional delays based on spectral methods. A Legendre-collocation method is employed to obtain highly accurate numerical approximations to the exact solution. It is proved theoretically and demonstrated numerically that the proposed method converges exponentially provided that the data in the are smooth. given pantograph delay differential equation