The effects of different environmental conditions on the wetting properties and surface morphology of surperhydrophobic quaking aspen leaves harvested during the 2011 growth season are examined. During this particular...The effects of different environmental conditions on the wetting properties and surface morphology of surperhydrophobic quaking aspen leaves harvested during the 2011 growth season are examined. During this particular season quaking aspen leaves were not able to retain their superhydrophobic properties and associated surface structure features as they have usually been able to do in other years. Representative scanning electron microscopy images and wetting property measurements of quaking aspen leaf surfaces harvested throughout this season are presented and discussed with the objective of linking weather induced environmental stresses that occurred in 2011 to the sudden and unusual reduction in non-wetting properties and drastic changes in leaf surface structure. Erosion and regeneration rates of leaf wax crystals and the impact that environmental factors can have on these are considered and used to explain the occurrence of these unexpected changes.展开更多
The persistence of quaking aspen (Populus tremuloides Michx.) is of significant importance to land managers in the Rocky Mountain region. Fire suppression in the past century has been implicated as a mechanism influen...The persistence of quaking aspen (Populus tremuloides Michx.) is of significant importance to land managers in the Rocky Mountain region. Fire suppression in the past century has been implicated as a mechanism influencing aspen population dynamics, as aspen are generally considered an early seral disturbance adapted species. The heterogeneity of aspen community assemblages and fire regimes makes it difficult to discern what the result of fire suppression has been at large spatial and temporal scales. Decision makers should investigate the questions at hand at the stand level in their study location to best determine the mechanisms at play, as well as consider future potential changes to the system.展开更多
Due to the joint development characteristic and macropore structure of loess,it is easy to cause structure collapse under earthquake or artificial vibration.The study on the loess disaster effect and its mechanism und...Due to the joint development characteristic and macropore structure of loess,it is easy to cause structure collapse under earthquake or artificial vibration.The study on the loess disaster effect and its mechanism under earthquake action is insufficient due to its complexity.Hence,to study the deformation and mechanical properties more accurately,the dynamic characteristics of saturated remolded loess under cyclic dynamic load were tested using a GDS dynamic triaxial instrument in this paper.The test results show that strain and pore water pressure increase gradually at different rates with the development of vibration,and there is an obvious inflection point in the time-history curve of both.When the number of vibrations(N)exceeds this point,the strain increases rapidly,and pore water pressure tends to be stable.Under the action of large amplitude and low-frequency dynamic load,the strain and pore water pressure increase rapidly with fewer vibrations and the deviator stress(q)decreases rapidly,while the sample achieves damage faster with the increase of amplitude.During the application of a dynamic load,the effective stress(p)gradually decreases and its rate of change slows down.Finally,when the saturated remolded loess is subjected to a constant-amplitude dynamic load,the combination of large amplitude and low frequency leads to the failure of the sample in the shortest time.展开更多
1 Türkiye is situated on a part of Earth's crust(地壳)which is like a busy crossroads for tectonic plates(地壳构造板块),where earthquakes happen frequently.Last year,big quakes shook Türkiye and Syria,ca...1 Türkiye is situated on a part of Earth's crust(地壳)which is like a busy crossroads for tectonic plates(地壳构造板块),where earthquakes happen frequently.Last year,big quakes shook Türkiye and Syria,caused by the Anatolian Plate rubbing against the Arabian Plate to the south.展开更多
The China Earthquake Networks Center officially determined that an earth⁃quake of magnitude 6.8 occurred in Luding County,Ganzi Prefecture,Sichuan Province at 12:52 on September 5,with a depth of 16 kilometers.
The propagation characteristics of the amplitude of the blasting seismic wave under the conditions of various topographies are approached by means of experiments. Some factors affecting the effects of quake insulation...The propagation characteristics of the amplitude of the blasting seismic wave under the conditions of various topographies are approached by means of experiments. Some factors affecting the effects of quake insulation groove, such as the size, the depth and the position of the quake insulation groove, are studied. The amplitudes of the blasting seismic waves under the conditions of the different sizes of the quake insulation groove are measured. According to the experiments, the effects of the quake insulation groove are related to the position, the distance, the energy of the explosion source and the size of the quake insulation groove itself. The farther it is from the explosion source, the smaller the energy is. The lower its position is and the larger its size is, the more remarkable the effects of the quake insulation groove are.展开更多
The rapid growth and early development period of the dual-scale surface topography was studied on the adaxial leaf surfaces of two aspen tree species with non-wetting leaves: the columnar European aspen (Populus tremu...The rapid growth and early development period of the dual-scale surface topography was studied on the adaxial leaf surfaces of two aspen tree species with non-wetting leaves: the columnar European aspen (Populus tremula “Erecta”) and quaking aspen (Populus tremuloides). Particular attention was focused on the formation of micro- and nano-scale asperities on their cuticles, which was correlated with the development of superhydrophobic wetting behaviour. Measurements of the wetting properties (contact angle and tilt-angle) provided an indication of the degree of hydrophobicity of their cuticles. Scanning electron microscopy and optical profilometry micrographs were used to follow the growth and major morphological changes of micro-scale papillae and nano-scale epicuticular wax (ECW) crystals, which led to a significant improvement in non-wetting behaviour. Both species exhibited syntopism in the form of small and larger nano-scale ECW platelet morphologies. These findings provide additional support for earlier suggestions that due to fluctuations in leaf hydrophobicity throughout the growing season, canopy storage capacity may also vary considerably throughout this time period.展开更多
In order to adopt the best safety procedures, man-made earthquakes should be differentiated as a function of their origin. At least four different types of settings can be recognized in which anthropogenic activities ...In order to adopt the best safety procedures, man-made earthquakes should be differentiated as a function of their origin. At least four different types of settings can be recognized in which anthropogenic activities may generate seismicity:(I) fluid removal from a stratigraphic reservoir in the underground can trigger the compaction of the voids and the collapse of the overlying volume, i.e., graviquakes; the deeper the reservoir, the bigger the volume and the earthquake magnitude;(II) wastewater or gas reinjection provides the reduction of friction in volumes and along fault planes, allowing creep or sudden activation of tectonic discontinuities, i.e., reinjection quakes;(III) fluid injection at supra-lithostatic pressure generates hydrofracturing and micro-seismicity, i.e., hydrofracturing quakes;(IV) fluid extraction or fluid injection,filling or unfilling of artificial lakes modifies the lithostatic load, which is the maximum principal stress in extensional tectonic settings, the minimum principal stress in contractional tectonic settings, and the intermediate principal stress in strike-slip settings, i.e., load quakes; over given pressure values, the increase of the lithostatic load may favour the activation of normal faults, whereas its decrease may favour thrust faults. For example, the filling of an artificial lake may generate normal fault-related seismicity.Therefore, each setting has its peculiarities and the knowledge of the different mechanisms may contribute to the adoption of the appropriate precautions in the various industrial activities.展开更多
文摘The effects of different environmental conditions on the wetting properties and surface morphology of surperhydrophobic quaking aspen leaves harvested during the 2011 growth season are examined. During this particular season quaking aspen leaves were not able to retain their superhydrophobic properties and associated surface structure features as they have usually been able to do in other years. Representative scanning electron microscopy images and wetting property measurements of quaking aspen leaf surfaces harvested throughout this season are presented and discussed with the objective of linking weather induced environmental stresses that occurred in 2011 to the sudden and unusual reduction in non-wetting properties and drastic changes in leaf surface structure. Erosion and regeneration rates of leaf wax crystals and the impact that environmental factors can have on these are considered and used to explain the occurrence of these unexpected changes.
文摘The persistence of quaking aspen (Populus tremuloides Michx.) is of significant importance to land managers in the Rocky Mountain region. Fire suppression in the past century has been implicated as a mechanism influencing aspen population dynamics, as aspen are generally considered an early seral disturbance adapted species. The heterogeneity of aspen community assemblages and fire regimes makes it difficult to discern what the result of fire suppression has been at large spatial and temporal scales. Decision makers should investigate the questions at hand at the stand level in their study location to best determine the mechanisms at play, as well as consider future potential changes to the system.
基金financially supported by the National Natural Science Foundation of China(No.42090053,No.41922054).
文摘Due to the joint development characteristic and macropore structure of loess,it is easy to cause structure collapse under earthquake or artificial vibration.The study on the loess disaster effect and its mechanism under earthquake action is insufficient due to its complexity.Hence,to study the deformation and mechanical properties more accurately,the dynamic characteristics of saturated remolded loess under cyclic dynamic load were tested using a GDS dynamic triaxial instrument in this paper.The test results show that strain and pore water pressure increase gradually at different rates with the development of vibration,and there is an obvious inflection point in the time-history curve of both.When the number of vibrations(N)exceeds this point,the strain increases rapidly,and pore water pressure tends to be stable.Under the action of large amplitude and low-frequency dynamic load,the strain and pore water pressure increase rapidly with fewer vibrations and the deviator stress(q)decreases rapidly,while the sample achieves damage faster with the increase of amplitude.During the application of a dynamic load,the effective stress(p)gradually decreases and its rate of change slows down.Finally,when the saturated remolded loess is subjected to a constant-amplitude dynamic load,the combination of large amplitude and low frequency leads to the failure of the sample in the shortest time.
文摘1 Türkiye is situated on a part of Earth's crust(地壳)which is like a busy crossroads for tectonic plates(地壳构造板块),where earthquakes happen frequently.Last year,big quakes shook Türkiye and Syria,caused by the Anatolian Plate rubbing against the Arabian Plate to the south.
文摘The China Earthquake Networks Center officially determined that an earth⁃quake of magnitude 6.8 occurred in Luding County,Ganzi Prefecture,Sichuan Province at 12:52 on September 5,with a depth of 16 kilometers.
文摘The propagation characteristics of the amplitude of the blasting seismic wave under the conditions of various topographies are approached by means of experiments. Some factors affecting the effects of quake insulation groove, such as the size, the depth and the position of the quake insulation groove, are studied. The amplitudes of the blasting seismic waves under the conditions of the different sizes of the quake insulation groove are measured. According to the experiments, the effects of the quake insulation groove are related to the position, the distance, the energy of the explosion source and the size of the quake insulation groove itself. The farther it is from the explosion source, the smaller the energy is. The lower its position is and the larger its size is, the more remarkable the effects of the quake insulation groove are.
文摘The rapid growth and early development period of the dual-scale surface topography was studied on the adaxial leaf surfaces of two aspen tree species with non-wetting leaves: the columnar European aspen (Populus tremula “Erecta”) and quaking aspen (Populus tremuloides). Particular attention was focused on the formation of micro- and nano-scale asperities on their cuticles, which was correlated with the development of superhydrophobic wetting behaviour. Measurements of the wetting properties (contact angle and tilt-angle) provided an indication of the degree of hydrophobicity of their cuticles. Scanning electron microscopy and optical profilometry micrographs were used to follow the growth and major morphological changes of micro-scale papillae and nano-scale epicuticular wax (ECW) crystals, which led to a significant improvement in non-wetting behaviour. Both species exhibited syntopism in the form of small and larger nano-scale ECW platelet morphologies. These findings provide additional support for earlier suggestions that due to fluctuations in leaf hydrophobicity throughout the growing season, canopy storage capacity may also vary considerably throughout this time period.
文摘In order to adopt the best safety procedures, man-made earthquakes should be differentiated as a function of their origin. At least four different types of settings can be recognized in which anthropogenic activities may generate seismicity:(I) fluid removal from a stratigraphic reservoir in the underground can trigger the compaction of the voids and the collapse of the overlying volume, i.e., graviquakes; the deeper the reservoir, the bigger the volume and the earthquake magnitude;(II) wastewater or gas reinjection provides the reduction of friction in volumes and along fault planes, allowing creep or sudden activation of tectonic discontinuities, i.e., reinjection quakes;(III) fluid injection at supra-lithostatic pressure generates hydrofracturing and micro-seismicity, i.e., hydrofracturing quakes;(IV) fluid extraction or fluid injection,filling or unfilling of artificial lakes modifies the lithostatic load, which is the maximum principal stress in extensional tectonic settings, the minimum principal stress in contractional tectonic settings, and the intermediate principal stress in strike-slip settings, i.e., load quakes; over given pressure values, the increase of the lithostatic load may favour the activation of normal faults, whereas its decrease may favour thrust faults. For example, the filling of an artificial lake may generate normal fault-related seismicity.Therefore, each setting has its peculiarities and the knowledge of the different mechanisms may contribute to the adoption of the appropriate precautions in the various industrial activities.