期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Deep Learning Model for News Quality Evaluation Based on Explicit and Implicit Information
1
作者 Guohui Song Yongbin Wang +1 位作者 Jianfei Li Hongbin Hu 《Intelligent Automation & Soft Computing》 2023年第12期275-295,共21页
Recommending high-quality news to users is vital in improving user stickiness and news platforms’reputation.However,existing news quality evaluation methods,such as clickbait detection and popularity prediction,are c... Recommending high-quality news to users is vital in improving user stickiness and news platforms’reputation.However,existing news quality evaluation methods,such as clickbait detection and popularity prediction,are challenging to reflect news quality comprehensively and concisely.This paper defines news quality as the ability of news articles to elicit clicks and comments from users,which represents whether the news article can attract widespread attention and discussion.Based on the above definition,this paper first presents a straightforward method to measure news quality based on the comments and clicks of news and defines four news quality indicators.Then,the dataset can be labeled automatically by the method.Next,this paper proposes a deep learning model that integrates explicit and implicit news information for news quality evaluation(EINQ).The explicit information includes the headline,source,and publishing time of the news,which attracts users to click.The implicit information refers to the news article’s content which attracts users to comment.The implicit and explicit information affect users’click and comment behavior differently.For modeling explicit information,the typical convolution neural network(CNN)is used to get news headline semantic representation.For modeling implicit information,a hierarchical attention network(HAN)is exploited to extract news content semantic representation while using the latent Dirichlet allocation(LDA)model to get the subject distribution of news as a semantic supplement.Considering the different roles of explicit and implicit information for quality evaluation,the EINQ exploits an attention layer to fuse them dynamically.The proposed model yields the Accuracy of 82.31%and the F-Score of 80.51%on the real-world dataset from Toutiao,which shows the effectiveness of explicit and implicit information dynamic fusion and demonstrates performance improvements over a variety of baseline models in news quality evaluation.This work provides empirical evidence for explicit and implicit factors in news quality evaluation and a new idea for news quality evaluation. 展开更多
关键词 Deep learning news quality communication studies CLASSIFICATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部