The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse ...The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse QoS requirements is proposed.As for this algorithm,each connection is assigned a priority,which is updated dynamically based on its service status concluding queue characteristic and channel state.A connection with the highest priority is scheduled each time.Analytical model is developed by assuming a Finite State Markov Chain(FSMC)channel model.Simulation results show that the proposed scheduling algorithm can improve the performance of mean waiting time and throughput in broadband wireless networks.展开更多
In this paper, we propose a flexible and fairness-oriented packet scheduling approach for 3GPP UTRAN long term evolution (LTE) type packet radio systems, building on the ordinary proportional fair (PF) scheduling prin...In this paper, we propose a flexible and fairness-oriented packet scheduling approach for 3GPP UTRAN long term evolution (LTE) type packet radio systems, building on the ordinary proportional fair (PF) scheduling principle and channel quality indicator (CQI) feedback. Special emphasis is also put on practical feedback reporting mechanisms, including the effects of mobile measurement and estimation errors, reporting delays, and CQI quantization and compression. The performance of the overall scheduling and feedback re-porting process is investigated in details, in terms of cell throughput, coverage and resource allocation fairness, by using extensive quasistatic cellular system simulations in practical OFDMA system environment with frequency reuse of 1. The performance simulations show that by using the proposed modified PF ap-proach, significant coverage improvements in the order of 50% can be obtained at the expense of only 10-15% throughput loss, for all reduced feedback reporting schemes. This reflects highly improved fairness in the radio resource management (RRM) compared to other existing schedulers, without essentially com-promising the cell capacity. Furthermore, we demonstrate the improved functionality increase in radio re-source management for UE’s utilizing multi-antenna diversity receivers.展开更多
Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportio...Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.展开更多
To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated ...To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated QoS-aware job dispatching policy is proposed, which correlates priorities of incoming jobs used for job selecting at the local scheduler of the grid node with the job dispatching policies at the global scheduler for computational grids. The stochastic high-level Petri net (SHLPN) model of a two-level hierarchy computational grid architecture is presented, and a model refinement is made to reduce the complexity of the model solution. A performance analysis technique based on the SHLPN is proposed to investigate the QoS-aware job scheduling policy. Numerical results show that the QoS-aware job dispatching policy outperforms the QoS-unaware job dispatching policy in balancing the high-priority jobs, and thus enables priority-based QoS.展开更多
An improved delay priority resource scheduling algorithm with low packet loss rate for multimedia broadcast multicast service(MBMS)in long term evolution(LTE)systems is proposed in this paper.Real-time services in LTE...An improved delay priority resource scheduling algorithm with low packet loss rate for multimedia broadcast multicast service(MBMS)in long term evolution(LTE)systems is proposed in this paper.Real-time services in LTE systems require lower delay and packet loss rate.However,it is difficult to meet the QoS requirements of real-time services using the current MBMS resource scheduling algorithm.The proposed algorithm in this paper jointly considers user delay information and real-time channel conditions.By introducing the user delay information,the lower delay and fairness of users are guaranteed.Meanwhile,by considering the channel conditions of users,the packet loss rate can be effectively reduced,improving the system throughput.Simulation results show that under the premise of ensuring the delay requirements of real-time services,the proposed algorithm achieves a lower packet loss rate compared to other existing algorithms.Furthermore,it can achieve a good balance between system throughput and user fairness.展开更多
Cognitive radio sensor network is applied to facilitate network monitoring and management, and achieves high spectrum efficiencies in smart grid. However, the conventional traffic scheduling mechanisms are hard to pro...Cognitive radio sensor network is applied to facilitate network monitoring and management, and achieves high spectrum efficiencies in smart grid. However, the conventional traffic scheduling mechanisms are hard to provide guaranteed quality of service for the secondary users. It is because that they ignore the influence of diverse transition requirements in heterogeneous traffi c. Therefore, a novel Qo S-aware packet scheduling mechanism is proposed to improve transmission quality for secondary users. In this mechanism, a Qo S-based prioritization model is established to address data classification firstly. And then, channel quality and the effect of channel switch are integrated into priority-based packet scheduling mechanism. At last, the simulation is implemented with MATLAB and OPNET. The results show that the proposed scheduling mechanism improves the transmission quality of high-priority secondary users and increase the whole system utilization by 10%.展开更多
Orthogonal Frequency-Division Multiple Access (OFDMA) systems have attracted considerable attention through technologies such as 3GPP Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMA...Orthogonal Frequency-Division Multiple Access (OFDMA) systems have attracted considerable attention through technologies such as 3GPP Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX). OFDMA is a flexible multiple-access technique that can accommodate many users with widely varying applications, data rates, and Quality of Service (QoS) requirements. OFDMA has the advantages of handling lower data rates and bursty traffic at a reduced power compared to single-user OFDM or its Time Division Multiple Access (TDMA) or Carrier Sense Multiple Access (CSMA) counterparts. In our work, we propose a Particle Swarm Optimization based resource allocation and scheduling scheme (PSORAS) with improved quality of service for OFDMA Systems. Simulation results indicate a clear reduction in delay compared to the Frequency Division Multiple Access (FDMA) scheme for resource allocation, at almost the same throughput and fairness. This makes our scheme absolutely suitable for handling real time traffic such real time video-on demand.展开更多
This paper presents an add-on Class of Service (CoS) layer for wireless mesh networks. The proposed protocol is applicable for contention-based MACs and is therefore compatible with most of the Wireless Local Area Net...This paper presents an add-on Class of Service (CoS) layer for wireless mesh networks. The proposed protocol is applicable for contention-based MACs and is therefore compatible with most of the Wireless Local Area Network (WLAN) and Wireless Sensor Network (WSN) protocols. The protocol has a locally centralized control for managing data flows, which either reserve a fixed bandwidth or are weighted by fair scheduling. The protocol reduces transmission collisions, thus improving the overall throughput. IEEE 802.11 adhoc WLAN has been taken as a platform for simulations and prototyping for evaluating the protocol performance. Network Simulator Version 2 (NS2) simulations show that the CoS protocol efficiently differentiates bandwidth, supports bandwidth reservations, and reaches less than 10 ms transfer delay on IEEE 802.11b WLAN. Testing with a full prototype implementation verified the performance of the protocol.展开更多
A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packe...A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packet-based calculation of the weight parameters. In addition, this paper proposes a novel service ratio calculation method and a queue mangement technology. The former adjusts the service ratio parameters adaptively based on the dynamics of the packet lengths and thee solves the unfairness problem induced by the variable packet length. The latter improves the utilization of the server's queue buffer and reduces the delay jitter through restricting the buffer length for each flow.展开更多
针对正交频分多址接入(Orthogonal frequency division multiple access,OFDMA)系统中多业务资源调度问题,提出了一种基于服务质量(Quality of service,QoS)的最小性能保证的资源机会调度算法。以系统总吞吐量优化为目标,根据业务的QoS...针对正交频分多址接入(Orthogonal frequency division multiple access,OFDMA)系统中多业务资源调度问题,提出了一种基于服务质量(Quality of service,QoS)的最小性能保证的资源机会调度算法。以系统总吞吐量优化为目标,根据业务的QoS参量设计子载波调度参数,并利用图论中最大加权双向匹配问题的求解算法,在各业务间公平分配子载波资源,保证了各业务的QoS要求。仿真结果表明,所提算法在保证各业务的最低速率要求的前提下有效地提高了系统总吞吐量性能。展开更多
下一代无线局域网(wireless local area network,WLAN)IEEE 802.11ax标准委员会将高服务质量(quality of service,QoS)保障作为下一代WLAN的重要技术目标之一。由于无线业务种类繁多,因此对QoS的要求必然也是多种多样,然而现有的基于正...下一代无线局域网(wireless local area network,WLAN)IEEE 802.11ax标准委员会将高服务质量(quality of service,QoS)保障作为下一代WLAN的重要技术目标之一。由于无线业务种类繁多,因此对QoS的要求必然也是多种多样,然而现有的基于正交频分多址(orthogonal frequency division multiple access,OFDMA)的介质访问控制(media access control,MAC)协议均不能很好地支持QoS多样化且要求高的特点。针对这一问题,提出了一种面向QoS的下一代WLAN OFDMA多址接入协议。在该协议中,一方面考虑后向兼容性,沿用IEEE 802.11e的4种优先级业务;另一方面引入面向QoS的优先级调度算法以支持未来无线业务QoS多样化且要求高的特点。最后,通过仿真验证所提协议QoS-OFDMA MAC的系统有效吞吐量比顺序调度算法的OFDMA MAC和比例公平调度算法的OFDMA MAC分别提高了57.8%和59%。展开更多
The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation ...The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.展开更多
文摘The MAC layer in IEEE802.16 is designed to differentiate service among traffic categories with different multimedia requirements.In this paper,a scheduling algorithm at MAC layer for multiple connections with diverse QoS requirements is proposed.As for this algorithm,each connection is assigned a priority,which is updated dynamically based on its service status concluding queue characteristic and channel state.A connection with the highest priority is scheduled each time.Analytical model is developed by assuming a Finite State Markov Chain(FSMC)channel model.Simulation results show that the proposed scheduling algorithm can improve the performance of mean waiting time and throughput in broadband wireless networks.
文摘In this paper, we propose a flexible and fairness-oriented packet scheduling approach for 3GPP UTRAN long term evolution (LTE) type packet radio systems, building on the ordinary proportional fair (PF) scheduling principle and channel quality indicator (CQI) feedback. Special emphasis is also put on practical feedback reporting mechanisms, including the effects of mobile measurement and estimation errors, reporting delays, and CQI quantization and compression. The performance of the overall scheduling and feedback re-porting process is investigated in details, in terms of cell throughput, coverage and resource allocation fairness, by using extensive quasistatic cellular system simulations in practical OFDMA system environment with frequency reuse of 1. The performance simulations show that by using the proposed modified PF ap-proach, significant coverage improvements in the order of 50% can be obtained at the expense of only 10-15% throughput loss, for all reduced feedback reporting schemes. This reflects highly improved fairness in the radio resource management (RRM) compared to other existing schedulers, without essentially com-promising the cell capacity. Furthermore, we demonstrate the improved functionality increase in radio re-source management for UE’s utilizing multi-antenna diversity receivers.
基金This work was funded by the National High Technology Research and Development Program ("863" Program) of China under Grant No.2007AA01Z289
文摘Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.
基金The National Natural Science Foundation of China(No60673054,90412012)
文摘To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated QoS-aware job dispatching policy is proposed, which correlates priorities of incoming jobs used for job selecting at the local scheduler of the grid node with the job dispatching policies at the global scheduler for computational grids. The stochastic high-level Petri net (SHLPN) model of a two-level hierarchy computational grid architecture is presented, and a model refinement is made to reduce the complexity of the model solution. A performance analysis technique based on the SHLPN is proposed to investigate the QoS-aware job scheduling policy. Numerical results show that the QoS-aware job dispatching policy outperforms the QoS-unaware job dispatching policy in balancing the high-priority jobs, and thus enables priority-based QoS.
基金Supported by the National Natural Science Foundation of China(61901027)。
文摘An improved delay priority resource scheduling algorithm with low packet loss rate for multimedia broadcast multicast service(MBMS)in long term evolution(LTE)systems is proposed in this paper.Real-time services in LTE systems require lower delay and packet loss rate.However,it is difficult to meet the QoS requirements of real-time services using the current MBMS resource scheduling algorithm.The proposed algorithm in this paper jointly considers user delay information and real-time channel conditions.By introducing the user delay information,the lower delay and fairness of users are guaranteed.Meanwhile,by considering the channel conditions of users,the packet loss rate can be effectively reduced,improving the system throughput.Simulation results show that under the premise of ensuring the delay requirements of real-time services,the proposed algorithm achieves a lower packet loss rate compared to other existing algorithms.Furthermore,it can achieve a good balance between system throughput and user fairness.
基金supported by the State Grid Technology Project of China(SGIT0000 KJJS1500008)
文摘Cognitive radio sensor network is applied to facilitate network monitoring and management, and achieves high spectrum efficiencies in smart grid. However, the conventional traffic scheduling mechanisms are hard to provide guaranteed quality of service for the secondary users. It is because that they ignore the influence of diverse transition requirements in heterogeneous traffi c. Therefore, a novel Qo S-aware packet scheduling mechanism is proposed to improve transmission quality for secondary users. In this mechanism, a Qo S-based prioritization model is established to address data classification firstly. And then, channel quality and the effect of channel switch are integrated into priority-based packet scheduling mechanism. At last, the simulation is implemented with MATLAB and OPNET. The results show that the proposed scheduling mechanism improves the transmission quality of high-priority secondary users and increase the whole system utilization by 10%.
文摘Orthogonal Frequency-Division Multiple Access (OFDMA) systems have attracted considerable attention through technologies such as 3GPP Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX). OFDMA is a flexible multiple-access technique that can accommodate many users with widely varying applications, data rates, and Quality of Service (QoS) requirements. OFDMA has the advantages of handling lower data rates and bursty traffic at a reduced power compared to single-user OFDM or its Time Division Multiple Access (TDMA) or Carrier Sense Multiple Access (CSMA) counterparts. In our work, we propose a Particle Swarm Optimization based resource allocation and scheduling scheme (PSORAS) with improved quality of service for OFDMA Systems. Simulation results indicate a clear reduction in delay compared to the Frequency Division Multiple Access (FDMA) scheme for resource allocation, at almost the same throughput and fairness. This makes our scheme absolutely suitable for handling real time traffic such real time video-on demand.
文摘This paper presents an add-on Class of Service (CoS) layer for wireless mesh networks. The proposed protocol is applicable for contention-based MACs and is therefore compatible with most of the Wireless Local Area Network (WLAN) and Wireless Sensor Network (WSN) protocols. The protocol has a locally centralized control for managing data flows, which either reserve a fixed bandwidth or are weighted by fair scheduling. The protocol reduces transmission collisions, thus improving the overall throughput. IEEE 802.11 adhoc WLAN has been taken as a platform for simulations and prototyping for evaluating the protocol performance. Network Simulator Version 2 (NS2) simulations show that the CoS protocol efficiently differentiates bandwidth, supports bandwidth reservations, and reaches less than 10 ms transfer delay on IEEE 802.11b WLAN. Testing with a full prototype implementation verified the performance of the protocol.
基金National Natural Science Foundation of China ( No.60572157)Sharp Corporation of Japanthe Hi-Tech Research and Development Program(863) of China (No.2003AA123310)
文摘A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packet-based calculation of the weight parameters. In addition, this paper proposes a novel service ratio calculation method and a queue mangement technology. The former adjusts the service ratio parameters adaptively based on the dynamics of the packet lengths and thee solves the unfairness problem induced by the variable packet length. The latter improves the utilization of the server's queue buffer and reduces the delay jitter through restricting the buffer length for each flow.
文摘针对正交频分多址接入(Orthogonal frequency division multiple access,OFDMA)系统中多业务资源调度问题,提出了一种基于服务质量(Quality of service,QoS)的最小性能保证的资源机会调度算法。以系统总吞吐量优化为目标,根据业务的QoS参量设计子载波调度参数,并利用图论中最大加权双向匹配问题的求解算法,在各业务间公平分配子载波资源,保证了各业务的QoS要求。仿真结果表明,所提算法在保证各业务的最低速率要求的前提下有效地提高了系统总吞吐量性能。
文摘下一代无线局域网(wireless local area network,WLAN)IEEE 802.11ax标准委员会将高服务质量(quality of service,QoS)保障作为下一代WLAN的重要技术目标之一。由于无线业务种类繁多,因此对QoS的要求必然也是多种多样,然而现有的基于正交频分多址(orthogonal frequency division multiple access,OFDMA)的介质访问控制(media access control,MAC)协议均不能很好地支持QoS多样化且要求高的特点。针对这一问题,提出了一种面向QoS的下一代WLAN OFDMA多址接入协议。在该协议中,一方面考虑后向兼容性,沿用IEEE 802.11e的4种优先级业务;另一方面引入面向QoS的优先级调度算法以支持未来无线业务QoS多样化且要求高的特点。最后,通过仿真验证所提协议QoS-OFDMA MAC的系统有效吞吐量比顺序调度算法的OFDMA MAC和比例公平调度算法的OFDMA MAC分别提高了57.8%和59%。
基金supported in part by the National Natural Science Foundation of China (No. 61971220)the Fundamental Research Funds for the Central Universities of Nanjing University of Aeronautics and Astronautics(NUAA)(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China (No. BK20181289)。
文摘The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.