The effects of gas composition, temperature, ore to coke ratio and prereduction rate of ore on coke degradation were studied. The results showed that 1% increment in solution loss of coke reduces coke strength by 0.6%...The effects of gas composition, temperature, ore to coke ratio and prereduction rate of ore on coke degradation were studied. The results showed that 1% increment in solution loss of coke reduces coke strength by 0.6%, and the coke degradation is accelerated with the temperature. The higher the temperature, the more coke surface is involved in reactions, and the less negative effect on coke strength is. Hydrogen exerts stronger effect on coke degradation than CO at high temperature. The coke degradation is decreased with the reduction of ore to coke ratio and increase of ore prereduction rate.展开更多
Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and t...Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and the other is decreasing CRI to suppress coke degradation in furnace.Different methods are adopted to realize effective catalysis(increasing CRI)and passivation(decreasing CRI)of coke.Simulation tests of coke in BF lumpy zone under gradual temperature rising have been done.Effect of CRI on gas composition,ore reduction,burden column permeability and heat reserve zone′s temperature under non-isothermal condition are studied.Then combined with iron making calculations,a novel BF operation suggestion is proposed as coke nut with small size be catalyzed and mixed with ore while skeletal coke with large size be passivated and separately charged into BF.展开更多
In order to effectively utilize the high reactivity coke, the gasification characteristics of high and low reactivity cokes were investigated at 1100 ℃. Low reactivity coke A and high reactivity coke B were chosen an...In order to effectively utilize the high reactivity coke, the gasification characteristics of high and low reactivity cokes were investigated at 1100 ℃. Low reactivity coke A and high reactivity coke B were chosen and charged into the reaction tube in two methods. The results indicated that the mass loss ratio of high reactivity coke in mixed cokes was more significant than that of single high reactivity coke in the middle stage of reaction. Nevertheless, the mass loss ratio of low reactivity coke in mixed cokes was less than that of single low reactivity coke. It was mainly attributed to gas diffusion and internal reaction of coke. When high and low reactivity cokes were mixed, the practical average mass loss ratio was nearly the same as the weighted average. The microscopic structures of coke indicated that with the increase of reaction time, the external and internal layers of low reactivity coke reacted more uniformly with CO2, whereas the reaction degree of external layer of high reactivity coke was obviously higher.展开更多
文摘The effects of gas composition, temperature, ore to coke ratio and prereduction rate of ore on coke degradation were studied. The results showed that 1% increment in solution loss of coke reduces coke strength by 0.6%, and the coke degradation is accelerated with the temperature. The higher the temperature, the more coke surface is involved in reactions, and the less negative effect on coke strength is. Hydrogen exerts stronger effect on coke degradation than CO at high temperature. The coke degradation is decreased with the reduction of ore to coke ratio and increase of ore prereduction rate.
基金Sponsored by National Natural Science Foundation of China(61271303)Fundamental Research Funds for CentralUniversities of China(FRF-TP-12-029A)
文摘Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and the other is decreasing CRI to suppress coke degradation in furnace.Different methods are adopted to realize effective catalysis(increasing CRI)and passivation(decreasing CRI)of coke.Simulation tests of coke in BF lumpy zone under gradual temperature rising have been done.Effect of CRI on gas composition,ore reduction,burden column permeability and heat reserve zone′s temperature under non-isothermal condition are studied.Then combined with iron making calculations,a novel BF operation suggestion is proposed as coke nut with small size be catalyzed and mixed with ore while skeletal coke with large size be passivated and separately charged into BF.
基金Item Sponsored by National Basic Research Program of China(2012CB720401)National Key Technology Research and Development Program in 12th Five-year Plan of China(2011BAC01B02)
文摘In order to effectively utilize the high reactivity coke, the gasification characteristics of high and low reactivity cokes were investigated at 1100 ℃. Low reactivity coke A and high reactivity coke B were chosen and charged into the reaction tube in two methods. The results indicated that the mass loss ratio of high reactivity coke in mixed cokes was more significant than that of single high reactivity coke in the middle stage of reaction. Nevertheless, the mass loss ratio of low reactivity coke in mixed cokes was less than that of single low reactivity coke. It was mainly attributed to gas diffusion and internal reaction of coke. When high and low reactivity cokes were mixed, the practical average mass loss ratio was nearly the same as the weighted average. The microscopic structures of coke indicated that with the increase of reaction time, the external and internal layers of low reactivity coke reacted more uniformly with CO2, whereas the reaction degree of external layer of high reactivity coke was obviously higher.