期刊文献+
共找到376篇文章
< 1 2 19 >
每页显示 20 50 100
Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel
1
作者 Xuelin Wang Zhenjia Xie +1 位作者 Xiucheng Li Chengjia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1298-1310,共13页
High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of disloc... High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel. 展开更多
关键词 high-strength steel MICROSTRUCTURE VISUALIZATION DIGITIZATION quantification mechanical properties
下载PDF
Classifying rockburst with confidence:A novel conformal prediction approach
2
作者 Bemah Ibrahim Isaac Ahenkorah 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期51-64,共14页
The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst asses... The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst assessment;however,a significant question remains unanswered:How reliable are these models,and at what confidence level are classifications made?Typically,ML models output single rockburst grade even in the face of intricate and out-of-distribution samples,without any associated confidence value.Given the susceptibility of ML models to errors,it becomes imperative to quantify their uncertainty to prevent consequential failures.To address this issue,we propose a conformal prediction(CP)framework built on traditional ML models(extreme gradient boosting and random forest)to generate valid classifications of rockburst while producing a measure of confidence for its output.The proposed framework guarantees marginal coverage and,in most cases,conditional coverage on the test dataset.The CP was evaluated on a rockburst case in the Sanshandao Gold Mine in China,where it achieved high coverage and efficiency at applicable confidence levels.Significantly,the CP identified several“confident”classifications from the traditional ML model as unreliable,necessitating expert verification for informed decision-making.The proposed framework improves the reliability and accuracy of rockburst assessments,with the potential to bolster user confidence. 展开更多
关键词 ROCKBURST Machine learning Uncertainty quantification Conformal prediction
下载PDF
Uncertainty quantification of inverse analysis for geomaterials using probabilistic programming
3
作者 Hongbo Zhao Shaojun Li +3 位作者 Xiaoyu Zang Xinyi Liu Lin Zhang Jiaolong Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期895-908,共14页
Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conv... Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems. 展开更多
关键词 Geological engineering Geotechnical engineering Inverse analysis Uncertainty quantification Probabilistic programming
下载PDF
Uncertainty-Aware Deep Learning: A Promising Tool for Trustworthy Fault Diagnosis
4
作者 Jiaxin Ren Jingcheng Wen +3 位作者 Zhibin Zhao Ruqiang Yan Xuefeng Chen Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1317-1330,共14页
Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack... Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack of interpretability of“black box”,which limits its deployment in safety-critical applications.A trusted fault diagnosis system requires that the faults can be accurately diagnosed in most cases,and the human in the deci-sion-making loop can be found to deal with the abnormal situa-tion when the models fail.In this paper,we explore a simplified method for quantifying both aleatoric and epistemic uncertainty in deterministic networks,called SAEU.In SAEU,Multivariate Gaussian distribution is employed in the deep architecture to compensate for the shortcomings of complexity and applicability of Bayesian neural networks.Based on the SAEU,we propose a unified uncertainty-aware deep learning framework(UU-DLF)to realize the grand vision of trustworthy fault diagnosis.Moreover,our UU-DLF effectively embodies the idea of“humans in the loop”,which not only allows for manual intervention in abnor-mal situations of diagnostic models,but also makes correspond-ing improvements on existing models based on traceability analy-sis.Finally,two experiments conducted on the gearbox and aero-engine bevel gears are used to demonstrate the effectiveness of UU-DLF and explore the effective reasons behind. 展开更多
关键词 Out-of-distribution detection traceability analysis trustworthy fault diagnosis uncertainty quantification.
下载PDF
Quantification of the concrete freeze–thaw environment across the Qinghai–Tibet Plateau based on machine learning algorithms
5
作者 QIN Yanhui MA Haoyuan +3 位作者 ZHANG Lele YIN Jinshuai ZHENG Xionghui LI Shuo 《Journal of Mountain Science》 SCIE CSCD 2024年第1期322-334,共13页
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma... The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP. 展开更多
关键词 Freeze–thaw cycles Quantification Machine learning algorithms Qinghai–Tibet Plateau CONCRETE
下载PDF
High-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer based on probability density evolution method
6
作者 Mingming Wang Linfang Qian +3 位作者 Guangsong Chen Tong Lin Junfei Shi Shijie Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期209-221,共13页
This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is establi... This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle. 展开更多
关键词 Truck-mounted howitzer Projectile motion Uncertainty quantification Probability density evolution method
下载PDF
Hydromechanical characterization of gas transport amidst uncertainty for underground nuclear explosion detection
7
作者 Wenfeng Li Chelsea W.Neil +3 位作者 J William Carey Meng Meng Luke P.Frash Philip H.Stauffer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2019-2032,共14页
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ... Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff. 展开更多
关键词 Underground nuclear explosion uncertainty quantification Radionuclide transport Biot effective stress coefficient Fracture permeability Matrix permeability
下载PDF
Uncertainty quantification of mechanism motion based on coupled mechanism—motor dynamic model for ammunition delivery system
8
作者 Jinsong Tang Linfang Qian +3 位作者 Longmiao Chen Guangsong Chen Mingming Wang Guangzu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期125-133,共9页
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro... In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system. 展开更多
关键词 Ammunition delivery system Electromechanical coupling dynamics Uncertainty quantification Generalized probability density evolution
下载PDF
Uncertainty-Aware Physical Simulation of Neural Radiance Fields for Fluids
9
作者 Haojie Lian Jiaqi Wang +4 位作者 Leilei Chen Shengze Li Ruochen Cao Qingyuan Hu Peiyun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1143-1163,共21页
This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from2Dimages.This approach reconstructs color and density fields from 2D images using Neural Radi... This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from2Dimages.This approach reconstructs color and density fields from 2D images using Neural Radiance Field(NeRF)and improves image quality using frequency regularization.The NeRF model is obtained via joint training ofmultiple artificial neural networks,whereby the expectation and standard deviation of density fields and RGB values can be evaluated for each pixel.In addition,customized physics-informed neural network(PINN)with residual blocks and two-layer activation functions are utilized to input the density fields of the NeRF into Navier-Stokes equations and convection-diffusion equations to reconstruct the velocity field.The velocity uncertainties are also evaluated through ensemble learning.The effectiveness of the proposed algorithm is demonstrated through numerical examples.The presentmethod is an important step towards downstream tasks such as reliability analysis and robust optimization in engineering design. 展开更多
关键词 Uncertainty quantification neural radiance field physics-informed neural network frequency regularization twolayer activation function ensemble learning
下载PDF
Generalized polynomial chaos expansion by reanalysis using static condensation based on substructuring
10
作者 D.LEE S.CHANG J.LEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期819-836,共18页
This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen... This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs. 展开更多
关键词 forward uncertainty quantification(UQ) generalized polynomial chaos expansion(GPCE) static reanalysis method static condensation SUBSTRUCTURING
下载PDF
Revolutionizing disease diagnosis and management:Open-access magnetic resonance imaging datasets a challenge for artificial intelligence driven liver iron quantification
11
作者 Jaber H Jaradat Abdulqadir J Nashwan 《World Journal of Clinical Cases》 SCIE 2024年第17期2921-2924,共4页
Artificial intelligence(AI),particularly machine learning(ML)and deep learning(DL)techniques,such as convolutional neural networks(CNNs),have emerged as transformative technologies with vast potential in healthcare.Bo... Artificial intelligence(AI),particularly machine learning(ML)and deep learning(DL)techniques,such as convolutional neural networks(CNNs),have emerged as transformative technologies with vast potential in healthcare.Body iron load is usually assessed using slightly invasive blood tests(serum ferritin,serum iron,and serum transferrin).Serum ferritin is widely used to assess body iron and drive medical management;however,it is an acute phase reactant protein offering wrong interpretation in the setting of inflammation and distressed patients.Magnetic resonance imaging is a non-invasive technique that can be used to assess liver iron.The ML and DL algorithms can be used to enhance the detection of minor changes.However,a lack of open-access datasets may delay the advancement of medical research in this field.In this letter,we highlight the importance of standardized datasets for advancing AI and CNNs in medical imaging.Despite the current limitations,embracing AI and CNNs holds promise in revolutionizing disease diagnosis and treatment. 展开更多
关键词 Liver diseases Magnetic resonance imaging Iron quantification Machine learning Deep learning
下载PDF
Clinical characteristics of patients with early-and late-onset optic neuromyelitis optica spectrum disease
12
作者 LI Fei LIU Ting +5 位作者 Yang Yi-hao LIN Hui-xia TONG jing-yi LI Zong-jun LIANG Bin-ji LI Qi-fu 《Journal of Hainan Medical University》 CAS 2024年第2期14-19,共6页
Objective:To analyze the different clinical features of patients with early-onset(EO-NMOSDs)and late-onset neuromyelitis optica spectrum diseases(LO-NMOSDs).Methods:A total of 51patients with neuromyelitis optica spec... Objective:To analyze the different clinical features of patients with early-onset(EO-NMOSDs)and late-onset neuromyelitis optica spectrum diseases(LO-NMOSDs).Methods:A total of 51patients with neuromyelitis optica spectrum disease who were diagnosed in our hospital for the first time from January 2015 to December 2022 were included in the First Affiliated Hospital of Hainan Medical College and divided into 22 cases in the EO-NMOSDs group and 29 cases in the LO-NMOSDs group according to whether the age of onset was 50 years old.The basic data,Extended Disability Status Scale(EDSS)score,blood and cerebrospinal fluid test indicators of the two groups were statistically analyzed.Results:There were no significant differences in demographic characteristics,clinical features and serum AQP-4 antibody positivity rate between the two groups(all P>0.05),and there were significant differences in triglycerides(TG),low-density lipoprotein(LDL),apolipoprotein A(APOA),apolipoprotein B(APOB)and lipoprotein a(P=0.010,P=0.048,P=0.014,P=0.061,P=0.001,respectively),and cerebrospinal fluid LDH,There were significant differences between microprotein quantification and EDSS score(P=0.018,P=0.034,P=0.025,respectively),and the level of microprotein quantification in cerebrospinal fluid of LO-NMOSDs had a certain correlation with the degree of disability(r=0.52,P<0.03).Conclusion:LO-NMOSDs and EO-NMOSDs group patients have similar demographic characteristics,serum AQP-4 antibody positive rate and clinical features,but compared with EO-NMOSDs,patients in LO-NMOSDs group are prone to abnormal lipid metabolism,higher trace proteins in cerebrospinal fluid and more likely to be disabled,and among LO-NMOSDs,the higher the trace protein in the cerebrospinal fluid,the more severe the disability status of patients. 展开更多
关键词 Optic neuromyelitis optica spectrum DISORDERS Late onset Cerebrospinal fluid microprotein quantification EDSS score
下载PDF
Characterization of tumors of jaw:Additive value of contrast enhancement and dual-energy computed tomography
13
作者 Deepak Justine Viswanathan Ashu Seith Bhalla +3 位作者 Smita Manchanda Ajoy Roychoudhury Deepika Mishra Asit Ranjan Mridha 《World Journal of Radiology》 2024年第4期82-93,共12页
BACKGROUND Currently,the differentiation of jaw tumors is mainly based on the lesion’s morphology rather than the enhancement characteristics,which are important in the differentiation of neoplasms across the body.Th... BACKGROUND Currently,the differentiation of jaw tumors is mainly based on the lesion’s morphology rather than the enhancement characteristics,which are important in the differentiation of neoplasms across the body.There is a paucity of literature on the enhancement characteristics of jaw tumors.This is mainly because,even though computed tomography(CT)is used to evaluate these lesions,they are often imaged without intravenous contrast.This study hypothesised that the enhancement characteristics of the solid component of jaw tumors can aid in the differentiation of these lesions in addition to their morphology by dual-energy CT,therefore improving the ability to differentiate between various pathologies.AIM To evaluate the role of contrast enhancement and dual-energy quantitative parameters in CT in the differentiation of jaw tumors.METHODS Fifty-seven patients with jaw tumors underwent contrast-enhanced dual-energy CT.Morphological analysis of the tumor,including the enhancing solid component,was done,followed by quantitative analysis of iodine concentration(IC),water concentration(WC),HU,and normalized IC.The study population was divided into four subgroups based on histopathological analysis-central giant cell granuloma(CGCG),ameloblastoma,odontogenic keratocyst(OKC),and other jaw tumors.A one-way ANOVA test for parametric variables and the Kruskal-Wallis test for nonparametric variables were used.If significant differences were found,a series of independent t-tests or Mann-Whitney U tests were used.RESULTS Ameloblastoma was the most common pathology(n=20),followed by CGCG(n=11)and OKC.CGCG showed a higher mean concentration of all quantitative parameters than ameloblastomas(P<0.05).An IC threshold of 31.35×100μg/cm^(3) had the maximum sensitivity(81.8%)and specificity(65%).Between ameloblastomas and OKC,the former showed a higher mean concentration of all quantitative parameters(P<0.001),however when comparing unilocular ameloblastomas with OKCs,the latter showed significantly higher WC.Also,ameloblastoma had a higher IC and lower WC compared to“other jaw tumors”group.CONCLUSION Enhancement characteristics of solid components combined with dual-energy parameters offer a more precise way to differentiate between jaw tumors. 展开更多
关键词 Jaw neoplasms Ameloblastomas Dual-energy computed tomography Iodine quantification Mandibular neoplasms Maxillary neoplasms
下载PDF
A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy 被引量:1
14
作者 龙杰 宋惟然 +1 位作者 侯宗余 王哲 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第7期82-89,共8页
Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superp... Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superposition of both matrix effects and signal uncertainty directly affects plasma parameters and further influences spectral intensity and LIBS quantification performance,a data selection method based on plasma temperature matching(DSPTM)was proposed to reduce both matrix effects and signal uncertainty.By selecting spectra with smaller plasma temperature differences for all samples,the proposed method was able to build up the quantification model to rely more on spectra with smaller matrix effects and signal uncertainty,therefore improving final quantification performance.When applied to quantitative analysis of the zinc content in brass alloys,it was found that both accuracy and precision were improved using either a univariate model or multiple linear regression(MLR).More specifically,for the univariate model,the root-mean-square error of prediction(RMSEP),the determination coefficients(R^(2))and relative standard derivation(RSD)were improved from 3.30%,0.864 and 18.8%to 1.06%,0.986 and 13.5%,respectively;while for MLR,RMSEP,R^(2)and RSD were improved from 3.22%,0.871 and 26.2%to 1.07%,0.986 and 17.4%,respectively.These results prove that DSPTM can be used as an effective method to reduce matrix effects and improve repeatability by selecting reliable data. 展开更多
关键词 laser-induced breakdown spectroscopy(LIBS) quantification UNCERTAINTY univariate/multivariate analysis matrix effects temperature matching
下载PDF
ARGs-OAP v3.0:Antibiotic-Resistance Gene Database Curation and Analysis Pipeline Optimization
15
作者 Xiaole Yin Xiawan Zheng +3 位作者 Liguan Li An-Ni Zhang Xiao-Tao Jiang Tong Zhang 《Engineering》 SCIE EI CAS CSCD 2023年第8期234-241,共8页
Antibiotic resistance,which is encoded by antibiotic-resistance genes(ARGs),has proliferated to become a growing threat to public health around the world.With technical advances,especially in the popularization of met... Antibiotic resistance,which is encoded by antibiotic-resistance genes(ARGs),has proliferated to become a growing threat to public health around the world.With technical advances,especially in the popularization of metagenomic sequencing,scientists have gained the ability to decipher the profiles of ARGs in diverse samples with high accuracy at an accelerated speed.To analyze thousands of ARGs in a highthroughput way,standardized and integrated pipelines are needed.The new version(v3.0)of the widely used ARGs online analysis pipeline(ARGs-OAP)has made significant improvements to both the reference database-the structured ARG(SARG)database-and the integrated analysis pipeline.SARG has been enhanced with sequence curation to improve annotation reliability,incorporate emerging resistance genotypes,and determine rigorous mechanism classification.The database has been further organized and visualized online in the format of a tree-like structure with a dictionary.It has also been divided into sub-databases for different application scenarios.In addition,the ARGs-OAP has been improved with adjusted quantification methods,simplified tool implementation,and multiple functions with userdefined reference databases.Moreover,the online platform now provides a diverse biostatistical analysis workflow with visualization packages for the efficient interpretation of ARG profiles.The ARGs-OAP v3.0 with an improved database and analysis pipeline will benefit academia,governmental management,and consultation regarding risk assessment of the environmental prevalence of ARGs. 展开更多
关键词 SARG database ARGs-OAP Antibiotic-resistance genes Environmental metagenome Quantification
下载PDF
Molecular diagnosis and direct quantification of cereal cyst nematode(Heterodera filipjevi) from field soil using TaqMan real-time PCR
16
作者 JIAN Jin-zhuo HUANG Wen-kun +4 位作者 KONG Ling-an JIAN Heng Sulaiman ABDULSALAM PENG De-liang PENG Huan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第8期2591-2601,共11页
Heterodera filipjevi continues to be a major threat to wheat production worldwide.Rapid detection and quantification of cyst nematodes are essential for more effective control against this nematode disease.In the pres... Heterodera filipjevi continues to be a major threat to wheat production worldwide.Rapid detection and quantification of cyst nematodes are essential for more effective control against this nematode disease.In the present study,a TaqManminor groove binder(TaqMan-MGB)probe-based fluorescence quantitative real-time PCR(qPCR)was successfully developed and used for quantifying H.filipjevi from DNA extracts of soil.The primers and probe designed from the obtained RAPD-SCAR marker fragments of H.filipjevi showed high specificity to H.filipjevi using DNA from isolatesconfirmed species of 23 Heterodera spp.,1 Globodera spp.and 3 Pratylenchus spp.The qPCR assay is highly sensitive and provides improved H.filipjevi detection sensitivity of as low as 4^(-3) single second-stage juvenile(J2)DNAs,10^(-3) female DNAs,and 0.01μgμL^(-1) genomic DNAs.A standard curve relating to the threshold cycle and log values of nematode numbers was generated and validated from artificially infested soils and was used to quantify H.filipjevi in naturally infested field soils.There was a high correlation between the H.filipjevi numbers estimated from 32 naturally infested field soils by both conventional methods and the numbers quantified using the qPCR assay.qPCR potentially provides a useful platform for the efficient detection and quantification of H.filipjevi directly from field soils and to quantify this species directly from DNA extracts of field soils. 展开更多
关键词 cereal cyst nematode Heterodera filipjevi molecular diagnosis quantification TaqMan real-time PCR
下载PDF
Uncertainty quantification of predicting stable structures for high-entropy alloys using Bayesian neural networks
17
作者 Yonghui Zhou Bo Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期118-124,I0005,共8页
High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated wi... High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated with density functional theory to search the configuration space of the CoNiRhRu HEA system.The BNN model was developed by considering six independent features of Co-Ni,Co-Rh,CoRu,Ni-Rh,Ni-Ru,and Rh-Ru in different shells and energies of structures as the labels.The root mean squared error of the energy predicted by BNN is 1.37 me V/atom.Moreover,the influence of feature periodicity on the energy of HEA in theoretical calculations is discussed.We found that when the neural network is optimized to a certain extent,only using the accuracy indicator of root mean square error to evaluate model performance is no longer accurate in some scenarios.More importantly,we reveal the importance of uncertainty quantification for neural networks to predict new structures of HEAs with proper confidence based on BNN. 展开更多
关键词 Uncertainty quantification High-entropy alloys Bayesian neural networks Energy prediction Structure screening
下载PDF
Defect inspection of indoor components in buildings using deep learning object detection and augmented reality
18
作者 Shun-Hsiang Hsu Ho-Tin Hung +1 位作者 Yu-Qi Lin Chia-Ming Chang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期41-54,共14页
Visual inspection is commonly adopted for building operation,maintenance,and safety.The durability and defects of components or materials in buildings can be quickly assessed through visual inspection.However,implemen... Visual inspection is commonly adopted for building operation,maintenance,and safety.The durability and defects of components or materials in buildings can be quickly assessed through visual inspection.However,implementations of visual inspection are substantially time-consuming,labor-intensive,and error-prone because useful auxiliary tools that can instantly highlight defects or damage locations from images are not available.Therefore,an advanced building inspection framework is developed and implemented with augmented reality(AR)and real-time damage detection in this study.In this framework,engineers should walk around and film every corner of the building interior to generate the three-dimensional(3D)environment through ARKit.Meanwhile,a trained YOLOv5 model real-time detects defects during this process,even in a large-scale field,and the defect locations indicating the detected defects are then marked in this 3D environment.The defects areas can be measured with centimeter-level accuracy with the light detection and ranging(LiDAR)on devices.All required damage information,including defect positions and sizes,is collected at a time and can be rendered in the 2D and 3D views.Finally,this visual inspection can be efficiently conducted,and the previously generated environment can also be loaded to re-localize existing defect marks for future maintenance and change observation.Moreover,the proposed framework is also implemented and verified by an underground parking lot in a building to detect and quantify surface defects on concrete components.As seen in the results,the conventional building inspection is significantly improved with the aid of the proposed framework in terms of damage localization,damage quantification,and inspection efficiency. 展开更多
关键词 visual inspection damage detection augmented reality damage quantification deep learning
下载PDF
FPGA-based acceleration for binary neural networks in edge computing
19
作者 Jin-Yu Zhan An-Tai Yu +4 位作者 Wei Jiang Yong-Jia Yang Xiao-Na Xie Zheng-Wei Chang Jun-Huan Yang 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第2期65-77,共13页
As a core component in intelligent edge computing,deep neural networks(DNNs)will increasingly play a critically important role in addressing the intelligence-related issues in the industry domain,like smart factories ... As a core component in intelligent edge computing,deep neural networks(DNNs)will increasingly play a critically important role in addressing the intelligence-related issues in the industry domain,like smart factories and autonomous driving.Due to the requirement for a large amount of storage space and computing resources,DNNs are unfavorable for resource-constrained edge computing devices,especially for mobile terminals with scarce energy supply.Binarization of DNN has become a promising technology to achieve a high performance with low resource consumption in edge computing.Field-programmable gate array(FPGA)-based acceleration can further improve the computation efficiency to several times higher compared with the central processing unit(CPU)and graphics processing unit(GPU).This paper gives a brief overview of binary neural networks(BNNs)and the corresponding hardware accelerator designs on edge computing environments,and analyzes some significant studies in detail.The performances of some methods are evaluated through the experiment results,and the latest binarization technologies and hardware acceleration methods are tracked.We first give the background of designing BNNs and present the typical types of BNNs.The FPGA implementation technologies of BNNs are then reviewed.Detailed comparison with experimental evaluation on typical BNNs and their FPGA implementation is further conducted.Finally,certain interesting directions are also illustrated as future work. 展开更多
关键词 ACCELERATOR BINARIZATION Field-programmable gate array(FPGA) Neural networks Quantification
下载PDF
Progress and prediction of multicomponent quantification in complex systems with practical LC-UV methods
20
作者 Xi Chen Zhao Yang +4 位作者 Yang Xu Zhe Liu Yanfang Liu Yuntao Dai Shilin Chen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第2期142-155,共14页
Complex systems exist widely,including medicines from natural products,functional foods,and biological samples.The biological activity of complex systems is often the result of the synergistic effect of multiple compo... Complex systems exist widely,including medicines from natural products,functional foods,and biological samples.The biological activity of complex systems is often the result of the synergistic effect of multiple components.In the quality evaluation of complex samples,multicomponent quantitative analysis(MCQA)is usually needed.To overcome the difficulty in obtaining standard products,scholars have proposed achieving MCQA through the“single standard to determine multiple components(SSDMC)”approach.This method has been used in the determination of multicomponent content in natural source drugs and the analysis of impurities in chemical drugs and has been included in the Chinese Pharmacopoeia.Depending on a convenient(ultra)high-performance liquid chromatography method,how can the repeatability and robustness of the MCQA method be improved?How can the chromatography conditions be optimized to improve the number of quantitative components?How can computer software technology be introduced to improve the efficiency of multicomponent analysis(MCA)?These are the key problems that remain to be solved in practical MCQA.First,this review article summarizes the calculation methods of relative correction factors in the SSDMC approach in the past five years,as well as the method robustness and accuracy evaluation.Second,it also summarizes methods to improve peak capacity and quantitative accuracy in MCA,including column selection and twodimensional chromatographic analysis technology.Finally,computer software technologies for predicting chromatographic conditions and analytical parameters are introduced,which provides an idea for intelligent method development in MCA.This paper aims to provide methodological ideas for the improvement of complex system analysis,especially MCQA. 展开更多
关键词 Multicomponent quantification analysis Single standard to determine multiple components Predictive software
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部