期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Composite quantile regression estimation for P-GARCH processes 被引量:1
1
作者 ZHAO Biao CHEN Zhao +1 位作者 TAO GuiPing CHEN Min 《Science China Mathematics》 SCIE CSCD 2016年第5期977-998,共22页
We consider the periodic generalized autoregressive conditional heteroskedasticity(P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH mo... We consider the periodic generalized autoregressive conditional heteroskedasticity(P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH model. Under some mild conditions, we establish the asymptotic results of proposed estimator.The Monte Carlo simulation is presented to assess the performance of proposed estimator. Numerical study results show that our proposed estimation outperforms other existing methods for heavy tailed distributions.The proposed methodology is also illustrated by Va R on stock price data. 展开更多
关键词 composite quantile regression periodic GARCH process strictly periodic stationarity strong consistency asymptotic normality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部