Some typical samples are used to explore the quantitative correlation with their features between a convective cloud and its rainfall field,with which to develop two morphological functions for the correlation and by ...Some typical samples are used to explore the quantitative correlation with their features between a convective cloud and its rainfall field,with which to develop two morphological functions for the correlation and by singling out their most suitable groups of parameters we propose a model for quantitatively estimating precipitation in the context o{ the in-advance recognition of meso-α convective system properties and its precipitating center.From the model fitting precision and forecasting accuracy we find that it is feasible to utilize geostationary meteorological satellite (GMS) digitalized imagery for estimating short-term rainfall in a quantitative manner.Also,evidence suggests that the model is supposed to be restricted in its applicability due to the fact that the employed samples are from rather typical rainfall events that are large-scale,slow-moving and have well-defined genesis and dissipative stages.展开更多
This is Part Ⅱ of this series.It introduces the technique for recognizing MαCS phased properties and its precipitation center or centers by means of dynamic digitalized cloud maps and presents the assessment of the ...This is Part Ⅱ of this series.It introduces the technique for recognizing MαCS phased properties and its precipitation center or centers by means of dynamic digitalized cloud maps and presents the assessment of the effectiveness of the model proposed in Part Ⅰ as to its fitting and forecasting accuracy.展开更多
文摘Some typical samples are used to explore the quantitative correlation with their features between a convective cloud and its rainfall field,with which to develop two morphological functions for the correlation and by singling out their most suitable groups of parameters we propose a model for quantitatively estimating precipitation in the context o{ the in-advance recognition of meso-α convective system properties and its precipitating center.From the model fitting precision and forecasting accuracy we find that it is feasible to utilize geostationary meteorological satellite (GMS) digitalized imagery for estimating short-term rainfall in a quantitative manner.Also,evidence suggests that the model is supposed to be restricted in its applicability due to the fact that the employed samples are from rather typical rainfall events that are large-scale,slow-moving and have well-defined genesis and dissipative stages.
文摘This is Part Ⅱ of this series.It introduces the technique for recognizing MαCS phased properties and its precipitation center or centers by means of dynamic digitalized cloud maps and presents the assessment of the effectiveness of the model proposed in Part Ⅰ as to its fitting and forecasting accuracy.