Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence(LIF)methods is developed to quantitatively measure the concentrations of hydroxyl in CH;/air flat laminar ...An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence(LIF)methods is developed to quantitatively measure the concentrations of hydroxyl in CH;/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor.展开更多
A transmission grating coupled with an X-ray charge coupled device (CCD) is used to quantitatively measure the proportion of high-order harmonics of the soft-X-ray source of beam line 4B7B. The results show that the...A transmission grating coupled with an X-ray charge coupled device (CCD) is used to quantitatively measure the proportion of high-order harmonics of the soft-X-ray source of beam line 4B7B. The results show that the monochromatic X-ray has third-order and second-order harmonics. The proportion of second-order harmonic of 4B7B is less than 9.0% and the third- order harmonic is below 0.7% when no suppressing method is applied. When suppression methods are used, the proportion of second-order harmonic is less than 1.7% and the third-order harmonic is ignorable.展开更多
The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF(laserinduced fluorescence) in flame.The detailed physical models of spectral absorption lineshape broadening,c...The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF(laserinduced fluorescence) in flame.The detailed physical models of spectral absorption lineshape broadening,collisional transition and quenching at elevated pressure are built.The fine energy level structure of the OH molecule is illustrated to understand the process with laser-induced fluorescence emission and others in the case without radiation,which include collisional quenching,rotational energy transfer(RET),and vibrational energy transfer(VET).Based on these,some numerical results are achieved by simulations in order to evaluate the fluorescence yield at elevated pressure.These results are useful for understanding the real physical processes in OH-LIF technique and finding a way to calibrate the signal for quantitative measurement of OH concentration in a practical combustor.展开更多
Objective: To study the relationship between the ser- um levels of hyaluronic acid (HA), procollagen type Ⅲ (PCⅢ), collagen type Ⅳ (CIV) and the histologi- cal degree of hepatic fibrosis evaluated by image analysis...Objective: To study the relationship between the ser- um levels of hyaluronic acid (HA), procollagen type Ⅲ (PCⅢ), collagen type Ⅳ (CIV) and the histologi- cal degree of hepatic fibrosis evaluated by image analysis, and the clinical significance of serum HA, PC Ⅲ, C Ⅳ in the diagnosis of hepatic fibrosis in pa- tients with chronic viral hepatitis. Methods: The concentrations of serum HA, PC Ⅲ, C Ⅳ in 151 patients with chronic viral hepatitis were measured by radioimmunoassay. Liver biopsies were performed in all the patients. Histological sections of 4 μm thickness were stained with Masson's trichrome for fibrosis assessment. Morphometric quantitative measurements for hepatic fibrosis assessment in the 4 μm sections were performed using a fully automated image analysis system. Serum levels of HA, PC Ⅲ, and C Ⅳ were analyzed at different stages of liver pa- thology and compared with the morphometric quanti- tative measurements of hepatic fibrosis. Results: The serum levels of HA, PC Ⅲ, C Ⅳ all ele- vated gradually with the progression of the disease, and all reached the highest in patients with liver cir- rhosis. There was a significant difference in the levels of these 3 components between liver cirrhosis group and the other groups (P<0.05). They all increased steadily with the histological stages of hepatic fibrosis, and reached the highest levels in stage Ⅳ. The serum levels of HA, PC Ⅲ, C Ⅳ were all positive- ly correlated with the histological stages of liver sec- tions and the morphometric measurement (P< 0.001). The coefficients with stages were 0.694, 0.493, 0.552 (P<0.001), respectively and with sur- face density of total collagen on liver biopsy sections by image analysis were 0. 715, 0. 595, 0. 573 (P< 0.001), respectively. Conclusion: The serum levels of HA, PC Ⅲ, C Ⅳ were in consistent with the degree of hepatic fibrosis, and the determination of these marks is valuable for detecting hepatic fibrosis.展开更多
Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of conce...Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.展开更多
Objective: To quantitatively identify and grade trigeminal sensory functions after 3 major surgical procedures of trigeminal neuralgia using a newly developed quantitative sensory testing technique, current perceptio...Objective: To quantitatively identify and grade trigeminal sensory functions after 3 major surgical procedures of trigeminal neuralgia using a newly developed quantitative sensory testing technique, current perception threshold measurement (CPTM). Methods: In the current study, there were 48 trigeminal neuralgia patients without history of prior surgical treatment. These patients received one of the following 3 surgical procedures, microvascular decompression (MVD), peripheral nerve block with alcohol (PNB), or percutaneous radiofrequency thermocoagulation (PRFT). The quantitative sensory testing measurement, CPTM, and conventional qualitative sensory testing measurements were performed preoperatively and postoperatively to evaluate and grade the trigeminal sensory functions All 3 major cutaneous sensory fiber types, large myelinated fibers (A beta), small myelinated fibers (A delta) and unmyelinated fibers(C) were allowed to quantitatively evaluate and grade by CPTM. The results of the measurements were statistically analyzed using a one-way analysis of variance (single factor). Each subject was his/her own control for comparison of the preoperative to postoperative state on the asymptomatic and symptomatic sides. Subjects were tested 48 h preoperatively and 4 weeks postoperatively. Results: PNB with alcohol and PRFT caused significant sensory dysfunction postoperatively in every fiber type, indicating damage to all fibers. On the contrary, the sensory function in all 3 fiber types was unchanged after MVD management. Conclusion: Among the 3 major surgical procedures tested, only MVD preserves sensory function in trigeminal system. CPTM is of quantitative nature on the evaluation of sensory functions of nerve fibers展开更多
The charge carrier concentration profile is a critical factor that determines semiconducting material properties and device performance.Dielectric force microscopy(DFM)has been previously developed to map charge carri...The charge carrier concentration profile is a critical factor that determines semiconducting material properties and device performance.Dielectric force microscopy(DFM)has been previously developed to map charge carrier concentrations with nanometer-scale spatial resolution.However,it is challenging to quantitatively obtain the charge carrier concentration,since the dielectric force is also affected by the mobility.Here,we quantitative measured the charge carrier concentration at the saturation mobility regime via the rectification effect-dependent gating ratio of DFM.By measuring a series of n-type GaAs and GaN thin films with mobility in the saturation regime,we confirmed the decreased DFM-measured gating ratio with increasing electron concentration.Combined with numerical simulation to calibrate the tip–sample geometry-induced systematic error,the quantitative correlation between the DFM-measured gating ratio and the electron concentration has been established,where the extracted electron concentration presents high accuracy in the range of 4×10^(16)–1×10^(18)cm^(-3).We expect the quantitative DFM to find broad applications in characterizing the charge carrier transport properties of various semiconducting materials and devices.展开更多
Live measurement growth traits are very important economic traits in pig production and breeding. In this research, quantitative trait loci (QTL) were detected for 11 live estimated growth and carcass traits, includ...Live measurement growth traits are very important economic traits in pig production and breeding. In this research, quantitative trait loci (QTL) were detected for 11 live estimated growth and carcass traits, including birth weight (BWT), average daily gain over testing periods (ADG3), live backfat thickness at last 3-4th lumbar (LBFT3), live loin eye area (LLEA), and so on, in 214 pig resource family population, including 180 F2 individual, by 39 microsatellite marker loci on SSC4, SSC6, SSC7, SSC8, and SSC13. The results indicated that 4 chromosome significant level QTL and one suggestive QTL were detected for ADG3 (at position of 50 cM on SSC8), LBFT3 (at position of 147 cM on SSC4), LLEA (one highly significant at position of 48 cM on SSC7; another significant at position of 125 cM on SSC8) and BWT (suggestive significant at position of 0 cM, at marker sw489 on SSC4). The phenotypic variance of these QTL accounted for 0.95% to 16.91%. Most of them were mentioned in previous reports; except the QTL of LLEA at position of sw1953 on SSC8 which maybe a new QTL.展开更多
The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, i...The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.展开更多
In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrica...In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrical structures of the subject, light flux reconstruction on arbitrary surface, calibration and quantification of the surface light flux and internal bioluminescence reconstruction. In particular, the geometrical structures are retrieved using a completely optical method and captured under identical viewing conditions with the bioluminescent images. As a result, the proposed framework avoids the utilization of computed tomography or magnetic resonance imaging to provide the geometrical structures. On the basis of experimental measurements, we evaluate the performance of the proposed all-optical quantitative framework using a mouse shaped phantom. Preliminary result reveals the potential and feasibility of the proposed framework for bioluminescence tomography.展开更多
Electron magnetic circular dichroism opens a new door to explore magnetic properties by transmitted electrons in the transmission electron microscope. However, obtaining quantitative magnetic parameters, such as spin ...Electron magnetic circular dichroism opens a new door to explore magnetic properties by transmitted electrons in the transmission electron microscope. However, obtaining quantitative magnetic parameters, such as spin and orbital magnetic moment with element-specificity, goes a long way along with the development and improvement of this technique both in theoretical and experimental aspects. In this review, we will give a detailed description of the quantitative electron magnetic circular dichroism(EMCD) technique to measure magnetic parameters with spin-specificity, element-specificity,site-specificity, and orbital-spin-specificity. The discussion completely contains the procedures from raw experimental data acquisition to final magnetic parameters, together with the related custom code we have developed.展开更多
To study quantitative change of cerebral blood flow (CBF) on patients with early syphilis, we have estab- lished a method on absolute measurement of rCBF by using SPECT with Ethyl Cysteinate Dimmer (ECD) as imaging ag...To study quantitative change of cerebral blood flow (CBF) on patients with early syphilis, we have estab- lished a method on absolute measurement of rCBF by using SPECT with Ethyl Cysteinate Dimmer (ECD) as imaging agent, and the method was applied to measure rCBF on patients with early syphilis. The rCBF values measured by this method are highly consistent with the values measured by other classical methods such as SPECT (123I-IMP) and PET (15O-H2O). The rCBF values for early syphilis patients and the normal control show some statistical differences. A routine quantitative absolute measurement of rCBF featured with simple procedures is therefore on the way of maturation.展开更多
Three-dimensional density measurement of unsteady flow field around a sphere is carried out in the ballistic range at Institute of Fluid Science, Tohoku University. Simultaneous multi-angle measurement system using tw...Three-dimensional density measurement of unsteady flow field around a sphere is carried out in the ballistic range at Institute of Fluid Science, Tohoku University. Simultaneous multi-angle measurement system using twelve digital cameras is installed in the test chamber of the ballistic range to achieve the three-dimensional density measurement. The Colored-Grid Background Oriented Schlieren (CGBOS) technique using colored-grid background is utilized for the reconstruction of density. The Mach number of the sphere is set to 1.5. The short pulse LEDs to illuminate the backgrounds are also installed in the chamber to capture the unsteady flow field around a flying sphere. Three-dimensional density distribution around a sphere is successfully reconstructed.展开更多
Purpose:To investigate a quantitative method to measure decentration distance(DD) and analyze the DD of four kinds of intraocular lenses (IOLs).Methods:The pseudophakic eye photos were taken under the slit lamp after ...Purpose:To investigate a quantitative method to measure decentration distance(DD) and analyze the DD of four kinds of intraocular lenses (IOLs).Methods:The pseudophakic eye photos were taken under the slit lamp after the IOLs were implanted a year or longer. Then the images were inputted into a computer and the Photoshop software was applied to analyze the DD. Four kinds of IOLs were analyzed, including AcrySof MA60BM (11 eyes), Allergan SA40N (11 eyes), AcrySof SA60AT/SA30AL (5 eyes), Corneal Quattro (4 eyes).Results:The mean value of DD was (0.264 3±0.157 4)mm in the AcrySof MA60BM group,(0.353 6±0.171 9)mm in the Array SA40N group,(0.309 9±0.152 9)mm in the SA60AT/SA30AL group, and (0.326 1±0.187 7)mm in the Quattro group. The difference of the DD values among these 4 kinds of IOLs had no statistic significance (F=0.506,P=0.681) and the values were not equal to zero (t=10.508, P < 0.001).Conclusion:The Photoshop method is a simple and efficient way for DD analysis. The modern foldable posterior-chamber-IOLs have good centration performances when implanted into the capsular bags. Eye Science 2004;20:48-51.展开更多
Inertial system platforms are a kind of important precision devices,which have the characteristics of difficult acquisition for state data and small sample scale.Focusing on the model optimization for data-driven faul...Inertial system platforms are a kind of important precision devices,which have the characteristics of difficult acquisition for state data and small sample scale.Focusing on the model optimization for data-driven fault state prediction and quantitative degreemeasurement,a fast small-sample supersphere one-class SVMmodelingmethod using support vectors pre-selection is systematically studied in this paper.By theorem-proving the irrelevance between themodel’s learning result and the non-support vectors(NSVs),the distribution characters of the support vectors are analyzed.On this basis,a modeling method with selected samples having specific geometry character fromthe training sets is also proposed.The method can remarkably eliminate theNSVs and improve the algorithm’s efficiency.The experimental results testify that the scale of training samples and the modeling time consumption both give a sharply decrease using the support vectors pre-selection method.The experimental results on inertial devices also show good fault prediction capability and effectiveness of quantitative anomaly measurement.展开更多
Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can a...Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
Introduction:Cochlear implant is currently the most widely proven interventions for auditory rehabilitation for children with severe sensorineural hearing impairment.However,there are obvious limitations in these curr...Introduction:Cochlear implant is currently the most widely proven interventions for auditory rehabilitation for children with severe sensorineural hearing impairment.However,there are obvious limitations in these current evaluation methods.This study aims to develop an evaluation system for quantitatively evaluating the effectiveness of cochlear implants for hearing-impaired children.Methods:A correspondence questionnaire was developed based on an initial indicator system that was developed based on the literature focused on the evaluation of cochlear implant outcomes in children.Twenty-five experts in otology,clinical audiology,rehabilitation audiology,and mental health from nine provinces in China were consulted.The degree of authority and coordination of experts and the indicators and weights of the quantitative evaluation system were analyzed.Seventy-eight children aged 3–11 years after cochlear implantation were recruited from two centers in Hubei province to evaluate the reliability and validity of the quantitative evaluation system.Results:The opinions of experts converged after the second round of correspondence,and the coordination and authority of the expert consensus were met.The recall rate of the questionnaire was 100%for both rounds.Five secondary indicators,including auditory ability,verbal ability,behavioral assessment,learning capabilities,and quality of life,and 13 tertiary indicators were reserved for the evaluation of cochlear implant effectiveness.The weight of each indicator was calculated.The Cronbach’sαcoefficient of the quantitative evaluation system based on the standardized items was 0.930,and the three extracted common factors could explain 78.86%of the total variance.Conclusions:An expert consensus-based evaluation system that can quantitatively evaluate the effectiveness of cochlear implants in children has been developed with good reliability and validity.展开更多
The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous a...The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous advancement in computational technology,specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process.Utilizing advanced image processing algorithms promotes the rectification of image distortions,concurrently elevating the overall image quality to superior standards.Extracting high-resolution,pixel-level discrete information and converting it into atomic-scale,followed by performing statistical calculations on the physical matters of interest through quantitative analysis,represent an effective strategy to maximize the value of electron microscope images.The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers.This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives:contrast,lattice and strain,as well as atomic displacements and polarization.It further elaborates on practical applications of these methods in electronic functional materials,notably in piezoelectrics/ferroelectrics and thermoelectrics.It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research,elucidating the structure–property correlations in high-performance systems,and guiding synthesis strategies.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金supported by the National Natural Science Foundation of China(Grant No.11272338)the Science and Technology on Scramjet Key Laboratory Funding,China(Grant No.STSKFKT 2013004)the China Scholarship Council
文摘An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence(LIF)methods is developed to quantitatively measure the concentrations of hydroxyl in CH;/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor.
文摘A transmission grating coupled with an X-ray charge coupled device (CCD) is used to quantitatively measure the proportion of high-order harmonics of the soft-X-ray source of beam line 4B7B. The results show that the monochromatic X-ray has third-order and second-order harmonics. The proportion of second-order harmonic of 4B7B is less than 9.0% and the third- order harmonic is below 0.7% when no suppressing method is applied. When suppression methods are used, the proportion of second-order harmonic is less than 1.7% and the third-order harmonic is ignorable.
基金Project supported by the National Natural Science Foundation of China(Grant No.11272338)the Fund from the Science and Technology on Scramjet Key Laboratory,China(Grant No.STSKFKT2013004)
文摘The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF(laserinduced fluorescence) in flame.The detailed physical models of spectral absorption lineshape broadening,collisional transition and quenching at elevated pressure are built.The fine energy level structure of the OH molecule is illustrated to understand the process with laser-induced fluorescence emission and others in the case without radiation,which include collisional quenching,rotational energy transfer(RET),and vibrational energy transfer(VET).Based on these,some numerical results are achieved by simulations in order to evaluate the fluorescence yield at elevated pressure.These results are useful for understanding the real physical processes in OH-LIF technique and finding a way to calibrate the signal for quantitative measurement of OH concentration in a practical combustor.
文摘Objective: To study the relationship between the ser- um levels of hyaluronic acid (HA), procollagen type Ⅲ (PCⅢ), collagen type Ⅳ (CIV) and the histologi- cal degree of hepatic fibrosis evaluated by image analysis, and the clinical significance of serum HA, PC Ⅲ, C Ⅳ in the diagnosis of hepatic fibrosis in pa- tients with chronic viral hepatitis. Methods: The concentrations of serum HA, PC Ⅲ, C Ⅳ in 151 patients with chronic viral hepatitis were measured by radioimmunoassay. Liver biopsies were performed in all the patients. Histological sections of 4 μm thickness were stained with Masson's trichrome for fibrosis assessment. Morphometric quantitative measurements for hepatic fibrosis assessment in the 4 μm sections were performed using a fully automated image analysis system. Serum levels of HA, PC Ⅲ, and C Ⅳ were analyzed at different stages of liver pa- thology and compared with the morphometric quanti- tative measurements of hepatic fibrosis. Results: The serum levels of HA, PC Ⅲ, C Ⅳ all ele- vated gradually with the progression of the disease, and all reached the highest in patients with liver cir- rhosis. There was a significant difference in the levels of these 3 components between liver cirrhosis group and the other groups (P<0.05). They all increased steadily with the histological stages of hepatic fibrosis, and reached the highest levels in stage Ⅳ. The serum levels of HA, PC Ⅲ, C Ⅳ were all positive- ly correlated with the histological stages of liver sec- tions and the morphometric measurement (P< 0.001). The coefficients with stages were 0.694, 0.493, 0.552 (P<0.001), respectively and with sur- face density of total collagen on liver biopsy sections by image analysis were 0. 715, 0. 595, 0. 573 (P< 0.001), respectively. Conclusion: The serum levels of HA, PC Ⅲ, C Ⅳ were in consistent with the degree of hepatic fibrosis, and the determination of these marks is valuable for detecting hepatic fibrosis.
基金Project supported by the National Natural Science Foundation of China (Grant No 083H311501)the National High Technology Research and Development Program of China (Grant No 073H3f1514)
文摘Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.
文摘Objective: To quantitatively identify and grade trigeminal sensory functions after 3 major surgical procedures of trigeminal neuralgia using a newly developed quantitative sensory testing technique, current perception threshold measurement (CPTM). Methods: In the current study, there were 48 trigeminal neuralgia patients without history of prior surgical treatment. These patients received one of the following 3 surgical procedures, microvascular decompression (MVD), peripheral nerve block with alcohol (PNB), or percutaneous radiofrequency thermocoagulation (PRFT). The quantitative sensory testing measurement, CPTM, and conventional qualitative sensory testing measurements were performed preoperatively and postoperatively to evaluate and grade the trigeminal sensory functions All 3 major cutaneous sensory fiber types, large myelinated fibers (A beta), small myelinated fibers (A delta) and unmyelinated fibers(C) were allowed to quantitatively evaluate and grade by CPTM. The results of the measurements were statistically analyzed using a one-way analysis of variance (single factor). Each subject was his/her own control for comparison of the preoperative to postoperative state on the asymptomatic and symptomatic sides. Subjects were tested 48 h preoperatively and 4 weeks postoperatively. Results: PNB with alcohol and PRFT caused significant sensory dysfunction postoperatively in every fiber type, indicating damage to all fibers. On the contrary, the sensory function in all 3 fiber types was unchanged after MVD management. Conclusion: Among the 3 major surgical procedures tested, only MVD preserves sensory function in trigeminal system. CPTM is of quantitative nature on the evaluation of sensory functions of nerve fibers
基金Project supported by the National Key R&D Program of China (Grant No. 2021YFA1202802)the National Natural Science Foundation of China (Grant Nos. 21875280,21991150, 21991153, and 22022205)+1 种基金the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-054)the Special Foundation for Carbon Peak Neutralization Technology Innovation Program of Jiangsu Province,China(Grant No. BE2022026)
文摘The charge carrier concentration profile is a critical factor that determines semiconducting material properties and device performance.Dielectric force microscopy(DFM)has been previously developed to map charge carrier concentrations with nanometer-scale spatial resolution.However,it is challenging to quantitatively obtain the charge carrier concentration,since the dielectric force is also affected by the mobility.Here,we quantitative measured the charge carrier concentration at the saturation mobility regime via the rectification effect-dependent gating ratio of DFM.By measuring a series of n-type GaAs and GaN thin films with mobility in the saturation regime,we confirmed the decreased DFM-measured gating ratio with increasing electron concentration.Combined with numerical simulation to calibrate the tip–sample geometry-induced systematic error,the quantitative correlation between the DFM-measured gating ratio and the electron concentration has been established,where the extracted electron concentration presents high accuracy in the range of 4×10^(16)–1×10^(18)cm^(-3).We expect the quantitative DFM to find broad applications in characterizing the charge carrier transport properties of various semiconducting materials and devices.
基金the National 973 Project of China (G2000016105) National Natural Science Foundation of China (30500358).
文摘Live measurement growth traits are very important economic traits in pig production and breeding. In this research, quantitative trait loci (QTL) were detected for 11 live estimated growth and carcass traits, including birth weight (BWT), average daily gain over testing periods (ADG3), live backfat thickness at last 3-4th lumbar (LBFT3), live loin eye area (LLEA), and so on, in 214 pig resource family population, including 180 F2 individual, by 39 microsatellite marker loci on SSC4, SSC6, SSC7, SSC8, and SSC13. The results indicated that 4 chromosome significant level QTL and one suggestive QTL were detected for ADG3 (at position of 50 cM on SSC8), LBFT3 (at position of 147 cM on SSC4), LLEA (one highly significant at position of 48 cM on SSC7; another significant at position of 125 cM on SSC8) and BWT (suggestive significant at position of 0 cM, at marker sw489 on SSC4). The phenotypic variance of these QTL accounted for 0.95% to 16.91%. Most of them were mentioned in previous reports; except the QTL of LLEA at position of sw1953 on SSC8 which maybe a new QTL.
基金Project(51606224) supported by the National Natural Science Foundation of China
文摘The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.
基金supported by National Basic Research Program of China (973 Program) (No.2011CB707702)National Natural Science Foundation of China (No.81090272, No.81000632, and No.30900334)+1 种基金Shaanxi Provincial Natural Science Foundation Research Project (No.2009JQ8018)Fundamental Research Funds for the Central Universities
文摘In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrical structures of the subject, light flux reconstruction on arbitrary surface, calibration and quantification of the surface light flux and internal bioluminescence reconstruction. In particular, the geometrical structures are retrieved using a completely optical method and captured under identical viewing conditions with the bioluminescent images. As a result, the proposed framework avoids the utilization of computed tomography or magnetic resonance imaging to provide the geometrical structures. On the basis of experimental measurements, we evaluate the performance of the proposed all-optical quantitative framework using a mouse shaped phantom. Preliminary result reveals the potential and feasibility of the proposed framework for bioluminescence tomography.
文摘Electron magnetic circular dichroism opens a new door to explore magnetic properties by transmitted electrons in the transmission electron microscope. However, obtaining quantitative magnetic parameters, such as spin and orbital magnetic moment with element-specificity, goes a long way along with the development and improvement of this technique both in theoretical and experimental aspects. In this review, we will give a detailed description of the quantitative electron magnetic circular dichroism(EMCD) technique to measure magnetic parameters with spin-specificity, element-specificity,site-specificity, and orbital-spin-specificity. The discussion completely contains the procedures from raw experimental data acquisition to final magnetic parameters, together with the related custom code we have developed.
文摘To study quantitative change of cerebral blood flow (CBF) on patients with early syphilis, we have estab- lished a method on absolute measurement of rCBF by using SPECT with Ethyl Cysteinate Dimmer (ECD) as imaging agent, and the method was applied to measure rCBF on patients with early syphilis. The rCBF values measured by this method are highly consistent with the values measured by other classical methods such as SPECT (123I-IMP) and PET (15O-H2O). The rCBF values for early syphilis patients and the normal control show some statistical differences. A routine quantitative absolute measurement of rCBF featured with simple procedures is therefore on the way of maturation.
文摘Three-dimensional density measurement of unsteady flow field around a sphere is carried out in the ballistic range at Institute of Fluid Science, Tohoku University. Simultaneous multi-angle measurement system using twelve digital cameras is installed in the test chamber of the ballistic range to achieve the three-dimensional density measurement. The Colored-Grid Background Oriented Schlieren (CGBOS) technique using colored-grid background is utilized for the reconstruction of density. The Mach number of the sphere is set to 1.5. The short pulse LEDs to illuminate the backgrounds are also installed in the chamber to capture the unsteady flow field around a flying sphere. Three-dimensional density distribution around a sphere is successfully reconstructed.
文摘Purpose:To investigate a quantitative method to measure decentration distance(DD) and analyze the DD of four kinds of intraocular lenses (IOLs).Methods:The pseudophakic eye photos were taken under the slit lamp after the IOLs were implanted a year or longer. Then the images were inputted into a computer and the Photoshop software was applied to analyze the DD. Four kinds of IOLs were analyzed, including AcrySof MA60BM (11 eyes), Allergan SA40N (11 eyes), AcrySof SA60AT/SA30AL (5 eyes), Corneal Quattro (4 eyes).Results:The mean value of DD was (0.264 3±0.157 4)mm in the AcrySof MA60BM group,(0.353 6±0.171 9)mm in the Array SA40N group,(0.309 9±0.152 9)mm in the SA60AT/SA30AL group, and (0.326 1±0.187 7)mm in the Quattro group. The difference of the DD values among these 4 kinds of IOLs had no statistic significance (F=0.506,P=0.681) and the values were not equal to zero (t=10.508, P < 0.001).Conclusion:The Photoshop method is a simple and efficient way for DD analysis. The modern foldable posterior-chamber-IOLs have good centration performances when implanted into the capsular bags. Eye Science 2004;20:48-51.
基金the National Natural Science Foundation of China(Grant No.61403397)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant Nos.2020JM-358,2015JM6313).
文摘Inertial system platforms are a kind of important precision devices,which have the characteristics of difficult acquisition for state data and small sample scale.Focusing on the model optimization for data-driven fault state prediction and quantitative degreemeasurement,a fast small-sample supersphere one-class SVMmodelingmethod using support vectors pre-selection is systematically studied in this paper.By theorem-proving the irrelevance between themodel’s learning result and the non-support vectors(NSVs),the distribution characters of the support vectors are analyzed.On this basis,a modeling method with selected samples having specific geometry character fromthe training sets is also proposed.The method can remarkably eliminate theNSVs and improve the algorithm’s efficiency.The experimental results testify that the scale of training samples and the modeling time consumption both give a sharply decrease using the support vectors pre-selection method.The experimental results on inertial devices also show good fault prediction capability and effectiveness of quantitative anomaly measurement.
基金financial supports from National Natural Science Foundation of China(No.62205172)Huaneng Group Science and Technology Research Project(No.HNKJ22-H105)Tsinghua University Initiative Scientific Research Program and the International Joint Mission on Climate Change and Carbon Neutrality。
文摘Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金supported by theHubei Disabled Persons Federation。
文摘Introduction:Cochlear implant is currently the most widely proven interventions for auditory rehabilitation for children with severe sensorineural hearing impairment.However,there are obvious limitations in these current evaluation methods.This study aims to develop an evaluation system for quantitatively evaluating the effectiveness of cochlear implants for hearing-impaired children.Methods:A correspondence questionnaire was developed based on an initial indicator system that was developed based on the literature focused on the evaluation of cochlear implant outcomes in children.Twenty-five experts in otology,clinical audiology,rehabilitation audiology,and mental health from nine provinces in China were consulted.The degree of authority and coordination of experts and the indicators and weights of the quantitative evaluation system were analyzed.Seventy-eight children aged 3–11 years after cochlear implantation were recruited from two centers in Hubei province to evaluate the reliability and validity of the quantitative evaluation system.Results:The opinions of experts converged after the second round of correspondence,and the coordination and authority of the expert consensus were met.The recall rate of the questionnaire was 100%for both rounds.Five secondary indicators,including auditory ability,verbal ability,behavioral assessment,learning capabilities,and quality of life,and 13 tertiary indicators were reserved for the evaluation of cochlear implant effectiveness.The weight of each indicator was calculated.The Cronbach’sαcoefficient of the quantitative evaluation system based on the standardized items was 0.930,and the three extracted common factors could explain 78.86%of the total variance.Conclusions:An expert consensus-based evaluation system that can quantitatively evaluate the effectiveness of cochlear implants in children has been developed with good reliability and validity.
基金Project supported by the financial support from the National Key R&D Program of China(Grant No.2021YFB3201100)the National Natural Science Foundation of China(Grant No.52172128)the Top Young Talents Programme of Xi’an Jiaotong University.
文摘The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous advancement in computational technology,specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process.Utilizing advanced image processing algorithms promotes the rectification of image distortions,concurrently elevating the overall image quality to superior standards.Extracting high-resolution,pixel-level discrete information and converting it into atomic-scale,followed by performing statistical calculations on the physical matters of interest through quantitative analysis,represent an effective strategy to maximize the value of electron microscope images.The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers.This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives:contrast,lattice and strain,as well as atomic displacements and polarization.It further elaborates on practical applications of these methods in electronic functional materials,notably in piezoelectrics/ferroelectrics and thermoelectrics.It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research,elucidating the structure–property correlations in high-performance systems,and guiding synthesis strategies.