We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and ...We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and the remnant state,respectively,and discuss their consistency.Then,we investigate the quantum tunneling from the event horizon of massless scalar particle by using the null geodesic method,and charged massive boson W^(±)and fermions by using the Hamilton-Jacob method.It is shown that the same Hawking temperature can be obtained from these tunneling processes of different particles and methods.Next,by using the generalized uncertainty principle(GUP),we study the quantum corrections to the tunneling and the temperature.Then the logarithmic correction to the black hole entropy is obtained.展开更多
For asymptotically flat black holes,Reall-Santos method is a convenient tool to compute leading higher derivative corrections to the thermodynamic quantities without actually solving the modified field equations.Howev...For asymptotically flat black holes,Reall-Santos method is a convenient tool to compute leading higher derivative corrections to the thermodynamic quantities without actually solving the modified field equations.However,there are subtleties in its generalization to asymptotically AdS black holes with general higher derivative corrections.First of all,it is necessary to know all the higher derivative holographic counterterms and the surface terms implementing the variational principle and subtracting the divergence.One then needs to solve for the modified AdS radius and rescale the time coordinate in an appropriate way such that the induced metric on the conformal boundary of AdS black hole is not modified.We observe that Reall-Santos method can be directly applied to a particular 4-derivative gravity model,known as the Einstein-Weyl gravity,which does not modify the AdS radius and requires only the Gibbons-Hawking-York term and holographic counterterms for the 2-derivative theory.We thus suggest that to compute the thermodynamic quantities of AdS black holes in general 4-derivative theories of gravity,one simply needs to transform it to a Einstein-Weyl gravity with identical thermodynamic variables by appropriate field redefinitions.We explicitly verify this proposal with spherically-symmetric and static charged black holes in Einstein-Maxwell theory extended with generic 4-derivative interactions.展开更多
Based on the generalized uncertainty principle (GUP), the researchers find that the quantum gravity affects the Klein-Gordon equation exactly. Hence, the Klein-Gordon equation which is corrected by GUP will be more su...Based on the generalized uncertainty principle (GUP), the researchers find that the quantum gravity affects the Klein-Gordon equation exactly. Hence, the Klein-Gordon equation which is corrected by GUP will be more suitable on the expression of the tunneling behavior. Then, the corrected Hawking temperature of the GHS black hole is obtained. After analyzing this result, we find out that the Hawking temperature is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we infer that the Hawking radiation will be stopped, and the remnants of black holes exist naturally.展开更多
We study the absorption probability and Hawking radiation of the scalar field in a d-dimensional black hole with quantum correction arising from the polymer quantization. We find that the quantum length scale k (i.e....We study the absorption probability and Hawking radiation of the scalar field in a d-dimensional black hole with quantum correction arising from the polymer quantization. We find that the quantum length scale k (i.e., the bounce radius) modifies the standard results in greybody factors and Hawking radiation on the brahe and into the bulk. For the black hole with the larger mass M the effects of the parameter k in the four-dimensional black hole spacetime are entirely different from those in the high dimensional cases. When the mass of black hole M becomes very small, we also find that only the sign of the change rate of the greybody factors on the brahe with respect to the dimensional number depends sharply on the bounce radius k. These information can help us know more about the extra dimension and the black holes with quantum correction.展开更多
Schwarzschild black holes with quantum corrections are studied under scalar field perturbations and electromagnetic field perturbations to analyze the effect of the correction term on the potential function and quasin...Schwarzschild black holes with quantum corrections are studied under scalar field perturbations and electromagnetic field perturbations to analyze the effect of the correction term on the potential function and quasinormal mode(QNM).In classical general relativity,spacetime is continuous and there is no existence of the so-called minimal length.The introduction of the correction items of the generalized uncertainty principle,the parameterβ,can change the singularity structure of the black hole gauge and may lead to discretization in time and space.We apply the sixth-order WKB method to approximate the QNM of Schwarzschild black holes with quantum corrections and perform numerical analysis to derive the results of the method.Also,we find that the effective potential and QNM in scalar fields are larger than those in electromagnetic fields.展开更多
We report for the first time that in heterotic string compactified on 4-torus or equivalently IIA string compactified on K3,the leading α′corrections to the rotating black string entropy at fixed conserved charges c...We report for the first time that in heterotic string compactified on 4-torus or equivalently IIA string compactified on K3,the leading α′corrections to the rotating black string entropy at fixed conserved charges can be negative.This further implies that the correction to the mass of extremal rotating string is positive,opposite to the standard expectation from the weak gravity conjecture.Our result suggests that the validity of positivity of entropy shift due to higher order operators depends on other factors omitted previously in the effective field theory analysis.展开更多
We calculate photon sphere r_(ph) and critical curve b_(c) for a quantum corrected Schwarzschild black hole,finding that they violate universal inequalities proved for asymptotically flat black holes that satisfy the ...We calculate photon sphere r_(ph) and critical curve b_(c) for a quantum corrected Schwarzschild black hole,finding that they violate universal inequalities proved for asymptotically flat black holes that satisfy the null energy condition in the framework of Einstein gravity.This violation seems to be a common phenomenon when considering quantum modification of Einstein gravity.Furthermore,we study the shadows,lensing rings,and photon rings in the quantum corrected Schwarzschild black hole.The violation leads to a larger bright lensing ring in the observational appearance of the thin disk emission near the black hole compared with the classical Schwarzschild black hole.Our analysis may provide observational evidence for the quantum effect of general relativity.展开更多
According to the generalized uncertainty principle (GUP), the Klein-Gordon equation is corrected by the quantum gravity exactly. Hence, the corrected Klein-Gordon equation will be more precise on the expression of the...According to the generalized uncertainty principle (GUP), the Klein-Gordon equation is corrected by the quantum gravity exactly. Hence, the corrected Klein-Gordon equation will be more precise on the expression of the tunneling behavior. Then, the corrected Hawking temperature of the Gibbons-Maeda-Dilaton black hole is obtained near the horizon by quantum gravity. Analyzing the results carefully, it is obvious for us that the tunneling result is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we also infer that the tunneling radiation would be stopped at some particular temperature.展开更多
In this paper, using the Parikh-Wilczek tunneling framework, we first calculate the emission rates of non-rotating BTZ black holes and rotating BTZ black holes to second order accuracy. Then, by assuming that the emis...In this paper, using the Parikh-Wilczek tunneling framework, we first calculate the emission rates of non-rotating BTZ black holes and rotating BTZ black holes to second order accuracy. Then, by assuming that the emission process satisfies an underlying unitary theory, we obtain the corrected entropy of the BTZ black holes. A log term emerges naturally in the expression of the corrected entropy. A discussion about the inverse area term is also presented.展开更多
基金Project supported by the Natural Science Foundation of Zhejiang Province,China (Grant No.LY14A030001)。
文摘We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and the remnant state,respectively,and discuss their consistency.Then,we investigate the quantum tunneling from the event horizon of massless scalar particle by using the null geodesic method,and charged massive boson W^(±)and fermions by using the Hamilton-Jacob method.It is shown that the same Hawking temperature can be obtained from these tunneling processes of different particles and methods.Next,by using the generalized uncertainty principle(GUP),we study the quantum corrections to the tunneling and the temperature.Then the logarithmic correction to the black hole entropy is obtained.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.11935009,and 12375052)the National Natural Science Foundation of China(Grant No.12175164)+1 种基金supported by the National Key Research and Development Program(Grant No.2022YFE0134300)partially supported by Peng Huanwu Center for Fundamental Theory(Grant No.12247103)。
文摘For asymptotically flat black holes,Reall-Santos method is a convenient tool to compute leading higher derivative corrections to the thermodynamic quantities without actually solving the modified field equations.However,there are subtleties in its generalization to asymptotically AdS black holes with general higher derivative corrections.First of all,it is necessary to know all the higher derivative holographic counterterms and the surface terms implementing the variational principle and subtracting the divergence.One then needs to solve for the modified AdS radius and rescale the time coordinate in an appropriate way such that the induced metric on the conformal boundary of AdS black hole is not modified.We observe that Reall-Santos method can be directly applied to a particular 4-derivative gravity model,known as the Einstein-Weyl gravity,which does not modify the AdS radius and requires only the Gibbons-Hawking-York term and holographic counterterms for the 2-derivative theory.We thus suggest that to compute the thermodynamic quantities of AdS black holes in general 4-derivative theories of gravity,one simply needs to transform it to a Einstein-Weyl gravity with identical thermodynamic variables by appropriate field redefinitions.We explicitly verify this proposal with spherically-symmetric and static charged black holes in Einstein-Maxwell theory extended with generic 4-derivative interactions.
文摘Based on the generalized uncertainty principle (GUP), the researchers find that the quantum gravity affects the Klein-Gordon equation exactly. Hence, the Klein-Gordon equation which is corrected by GUP will be more suitable on the expression of the tunneling behavior. Then, the corrected Hawking temperature of the GHS black hole is obtained. After analyzing this result, we find out that the Hawking temperature is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we infer that the Hawking radiation will be stopped, and the remnants of black holes exist naturally.
基金Supported by the National Natural Science Foundation of China under Grant No. 11275065the NCET under Grant No. 10-0165+1 种基金the PCSIRT under Grant No. IRT0964the construct program of key disciplines in Hunan Province
文摘We study the absorption probability and Hawking radiation of the scalar field in a d-dimensional black hole with quantum correction arising from the polymer quantization. We find that the quantum length scale k (i.e., the bounce radius) modifies the standard results in greybody factors and Hawking radiation on the brahe and into the bulk. For the black hole with the larger mass M the effects of the parameter k in the four-dimensional black hole spacetime are entirely different from those in the high dimensional cases. When the mass of black hole M becomes very small, we also find that only the sign of the change rate of the greybody factors on the brahe with respect to the dimensional number depends sharply on the bounce radius k. These information can help us know more about the extra dimension and the black holes with quantum correction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11465006,Grant Nos.11565009)the Special Research Fund for Natural Science of Guizhou University(Grant No.X2020068)。
文摘Schwarzschild black holes with quantum corrections are studied under scalar field perturbations and electromagnetic field perturbations to analyze the effect of the correction term on the potential function and quasinormal mode(QNM).In classical general relativity,spacetime is continuous and there is no existence of the so-called minimal length.The introduction of the correction items of the generalized uncertainty principle,the parameterβ,can change the singularity structure of the black hole gauge and may lead to discretization in time and space.We apply the sixth-order WKB method to approximate the QNM of Schwarzschild black holes with quantum corrections and perform numerical analysis to derive the results of the method.Also,we find that the effective potential and QNM in scalar fields are larger than those in electromagnetic fields.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875200,11935009,and 12175164)supported by the National Key Research and Development Program(Grant No.2022YFE0134300)。
文摘We report for the first time that in heterotic string compactified on 4-torus or equivalently IIA string compactified on K3,the leading α′corrections to the rotating black string entropy at fixed conserved charges can be negative.This further implies that the correction to the mass of extremal rotating string is positive,opposite to the standard expectation from the weak gravity conjecture.Our result suggests that the validity of positivity of entropy shift due to higher order operators depends on other factors omitted previously in the effective field theory analysis.
基金J.P.is supported by the China Scholarship Council.M.G.is supported by National Natural Science Foundation of China(NSFC)(11947210)funded by China Postdoctoral Science Foundation(2019M660278)X.H.F.is supported by NSFC(11905157,11935009)。
文摘We calculate photon sphere r_(ph) and critical curve b_(c) for a quantum corrected Schwarzschild black hole,finding that they violate universal inequalities proved for asymptotically flat black holes that satisfy the null energy condition in the framework of Einstein gravity.This violation seems to be a common phenomenon when considering quantum modification of Einstein gravity.Furthermore,we study the shadows,lensing rings,and photon rings in the quantum corrected Schwarzschild black hole.The violation leads to a larger bright lensing ring in the observational appearance of the thin disk emission near the black hole compared with the classical Schwarzschild black hole.Our analysis may provide observational evidence for the quantum effect of general relativity.
文摘According to the generalized uncertainty principle (GUP), the Klein-Gordon equation is corrected by the quantum gravity exactly. Hence, the corrected Klein-Gordon equation will be more precise on the expression of the tunneling behavior. Then, the corrected Hawking temperature of the Gibbons-Maeda-Dilaton black hole is obtained near the horizon by quantum gravity. Analyzing the results carefully, it is obvious for us that the tunneling result is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we also infer that the tunneling radiation would be stopped at some particular temperature.
基金supported by the National Natural Science Foundationof China (Grant Nos. 10873003 and 10633010)the Natural ScienceFoundation of Guangdong Province (Grant No. 7301224)
文摘In this paper, using the Parikh-Wilczek tunneling framework, we first calculate the emission rates of non-rotating BTZ black holes and rotating BTZ black holes to second order accuracy. Then, by assuming that the emission process satisfies an underlying unitary theory, we obtain the corrected entropy of the BTZ black holes. A log term emerges naturally in the expression of the corrected entropy. A discussion about the inverse area term is also presented.