The finite size effect in a two-dimensional topological insulator can induce an energy gap Eg in the spectrum of helical edge states for a strip of finite width. In a recent work, it has been found that when the spin-...The finite size effect in a two-dimensional topological insulator can induce an energy gap Eg in the spectrum of helical edge states for a strip of finite width. In a recent work, it has been found that when the spin--orbit coupling due to bulk-inversion asymmetry is taken into account, the energy gap Eg of the edge states features an oscillating exponential decay as a function of the strip width of the inverted HgTe quantum well. In this paper, we investigate the effects of the interface between a topological insulator and a normal insulator on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. Two different types of boundary conditions, i.e., the symmetric and asymmetric geometries, are considered. It is found that due to the existence of the interface between topological insulator and normal insulator this oscillatory pattern on the exponential decay induced by bulk-inversion asymmetry is modulated by the width of normal insulator regions. With the variation of the width of normal insulator regions, the shift of the Dirac point of the edge states in the spectrum and the energy gap Eg closing point in the oscillatory pattern can occur. Additionally, the effect of the spin-orbit coupling due to structure-inversion asymmetry on the finite size effects is also investigated.展开更多
We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phas...We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.展开更多
Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states...Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states in the presence of a strong magnetic field, which exhibit a one-dimensional metal-insulator crossover due to suppression of surface diffusion by disorder potential. We study the nontrivial surface states in a lattice model and find a wide crossover of the level-spacing distribution through a semi-Poisson distribution. We also discover a nonmonotonic evolution of the level statistics due to the disorder-induced mixture of surface and bulk states.展开更多
Using the natural orbitals renormalization group(NORG)method,we investigate the screening of the local spin of an Anderson impurity interacting with the helical edge states in a quantum spin Hall insulator.It is fou...Using the natural orbitals renormalization group(NORG)method,we investigate the screening of the local spin of an Anderson impurity interacting with the helical edge states in a quantum spin Hall insulator.It is found that there is a local spin formed at the impurity site and the local spin is completel.y screened by electrons in the quantum spin Hall insulator.Meanwhile,the local spin is screened dominantly by a single active natural orbital.We then show that the Kondo screening mechanism becomes transparent and simple in the framework of the natural orbitals formalism.We project the active natural orbital respectively into real space and momentum space to characterize its structure.We conilrm the spin-momentum locking property of the edge states based on the occupancy of a Bloch state on the edge to which the impurity couples.Furthermore,we study the dynamical property of the active natural orbital represented by the local density of states,from which we observe the Kondo resonance peak.展开更多
There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite wi...There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.展开更多
For the numerical simulation of the fractional quantum Hall(FQH) effects on a finite disk, the rotational symmetry is the only symmetry that is used in diagonalizing the Hamiltonian. In this work, we propose a method ...For the numerical simulation of the fractional quantum Hall(FQH) effects on a finite disk, the rotational symmetry is the only symmetry that is used in diagonalizing the Hamiltonian. In this work, we propose a method of using the weak translational symmetry for the center of mass of the many-body system. With this approach, the bulk properties, such as the energy gap and the magneto-roton excitation are consistent with those in the closed manifolds like the sphere and torus. As an application, we consider the FQH phase and its phase transition in the fast rotated dipolar fermions. We thus demonstrate the disk geometry having versatility in analyzing the bulk properties beside the usual edge physics.展开更多
The electronic Fabry–Pérot interferometer operating in the quantum Hall regime may be a promising tool for probing edge state interferences and studying the non-Abelian statistics of fractionally charged quasipa...The electronic Fabry–Pérot interferometer operating in the quantum Hall regime may be a promising tool for probing edge state interferences and studying the non-Abelian statistics of fractionally charged quasiparticles. Here we report on realizing a quantum Hall Fabry–Pérot interferometer based on monolayer graphene. We observe resistance oscillations as a function of perpendicular magnetic field and gate voltage both on the electron and hole sides. Their Coulomb-dominated origin is revealed by the positive(negative) slope of the constant phase lines in the plane of magnetic field and gate voltage on the electron(hole) side. Our work demonstrates that the graphene interferometer is feasible and paves the way for the studies of edge state interferences since high-Landau-level and even denominator fractional quantum Hall states have been found in graphene.展开更多
The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the ...The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the TR symmetry. The possibility to realize a robust QSH effect by artificial removal of the TR symmetry of the edge states is explored. As a useful tool to characterize topological phases without the TR symmetry, the spin-Chern number theory is introduced.展开更多
We theoretically investigate possible quantum Hall phases and corresponding edge states in graphene by taking a strong magnetic field, Zeeman splitting M, and sublattice potential △ into account but without spin–orb...We theoretically investigate possible quantum Hall phases and corresponding edge states in graphene by taking a strong magnetic field, Zeeman splitting M, and sublattice potential △ into account but without spin–orbit interaction. It was found that for the undoped graphene either a quantum valley Hall phase or a quantum spin Hall phase emerges in the system, depending on relative magnitudes of M and △. When the Fermi energy deviates from the Dirac point, the quantum spin-valley Hall phase appears and its characteristic edge state is contributed only by one spin and one valley species. The metallic boundary states bridging different quantum Hall phases possess a half-integer quantized conductance, like e^2/2h or3e^2/2h. The possibility of tuning different quantum Hall states with M and △ suggests possible graphene-based spintronics and valleytronics applications.展开更多
For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) e...For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap.Generally,due to the finite size effect in QSH systems,the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum.In this paper,we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions,i.e.,the straight,bearded and asymmetry edges.The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice.For a strip Lieb lattice with two straight edges,the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum.Moreover,it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice,and no gap is opened in the edge band.It is concluded that the finite size effect of QSH states is absent in the case with the straight edges.However,in the other two cases with the bearded and asymmetry edges,the energy gap induced by the finite size effect is still opened with decreasing the width of the strip.It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms.展开更多
It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin ...It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron–electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling(SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state.展开更多
Monolayer group-VIB transition metal dichalcogenides(TMDs)feature low-energy massive Dirac fermions,which have valley contrasting Berry curvature.This nontrivial local band topology gives rise to valley Hall transport...Monolayer group-VIB transition metal dichalcogenides(TMDs)feature low-energy massive Dirac fermions,which have valley contrasting Berry curvature.This nontrivial local band topology gives rise to valley Hall transport and optical selection rules for interband transitions that open up new possibilities for valleytronics.However,the large bandgap in TMDs results in relatively small Berry curvature,leading to weak valley contrasting physics in practical experiments.Here,we show that Dirac fermions with tunable large Berry curvature can be engineered in moirésuperlattice of TMD heterobilayers.These moiréDirac fermions are created in a magnified honeycomb lattice with its sublattice degree of freedom formed by two local moirépotential minima.We show that applying an on-site potential can tune the moiréflat bands into helical ones.In short-period moirésuperlattice,we find that the two moirévalleys become asymmetric,which results in a net spin Hall current.More interestingly,a circularly polarized light drives these moiréDirac fermions into quantum anomalous Hall phase with chiral edge states.Our results open a new possibility to design the moiré-scale spin and valley physics using TMD moiréstructures.展开更多
By using the Bloch eigenmode matching approach, we numerically study the evolution of individual quantum Hall edge states with respect to disorder. As demonstrated by the two-parameter renormal- ization group flow of ...By using the Bloch eigenmode matching approach, we numerically study the evolution of individual quantum Hall edge states with respect to disorder. As demonstrated by the two-parameter renormal- ization group flow of the Hall and Thouless conductances, quantum Hall edge states with high Chern number n are completely different from that of the n = 1 case. Two categories of individual edge modes are evaluated in a quantum Hall system with high Chern number. Edge states from the lowest Landau level have similar eigenfunctions that are well localized at the system edge and independent of the Fermi energy. On the other hand, at fixed Fermi energy, the edge state from higher Landau levels exhibit larger expansion, which results in less stable quantum Hall states at high Fermi energies. By presenting the local current density distribution, the effect of disorder on eigenmode-resolved edge states is distinctly demonstrated.展开更多
By virtue of the two-layer picture of Pfatfian pair Hall state, a qubit representation of topological degeneracy for quasiholes excitation is displayed. The non-Abelian feature of states can be manifested readily by t...By virtue of the two-layer picture of Pfatfian pair Hall state, a qubit representation of topological degeneracy for quasiholes excitation is displayed. The non-Abelian feature of states can be manifested readily by the new wave functions. The virtue of this approach is that one does not need to find the equalities of Pfalfians, which is a so tedious task as exemplified for the case of six quasiholes. Then the braiding matrices are also constructed readily by just permutating single-qubit states, which are unitary and hermite.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in University of the Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘The finite size effect in a two-dimensional topological insulator can induce an energy gap Eg in the spectrum of helical edge states for a strip of finite width. In a recent work, it has been found that when the spin--orbit coupling due to bulk-inversion asymmetry is taken into account, the energy gap Eg of the edge states features an oscillating exponential decay as a function of the strip width of the inverted HgTe quantum well. In this paper, we investigate the effects of the interface between a topological insulator and a normal insulator on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. Two different types of boundary conditions, i.e., the symmetric and asymmetric geometries, are considered. It is found that due to the existence of the interface between topological insulator and normal insulator this oscillatory pattern on the exponential decay induced by bulk-inversion asymmetry is modulated by the width of normal insulator regions. With the variation of the width of normal insulator regions, the shift of the Dirac point of the edge states in the spectrum and the energy gap Eg closing point in the oscillatory pattern can occur. Additionally, the effect of the spin-orbit coupling due to structure-inversion asymmetry on the finite size effects is also investigated.
基金supported by the National Natural Science Foundation of China (Grant No. 11874263)the National Key R&D Program of China (Grant No. 2017YFE0131300)Shanghai Technology Innovation Action Plan (2020-Integrated Circuit Technology Support Program 20DZ1100605,2021-Fundamental Research Area 21JC1404700)。
文摘We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.
基金Supported by the National Natural Science Foundation of China (Grant No.11674282)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB28000000)。
文摘Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states in the presence of a strong magnetic field, which exhibit a one-dimensional metal-insulator crossover due to suppression of surface diffusion by disorder potential. We study the nontrivial surface states in a lattice model and find a wide crossover of the level-spacing distribution through a semi-Poisson distribution. We also discover a nonmonotonic evolution of the level statistics due to the disorder-induced mixture of surface and bulk states.
基金Supported by National Natural Science Foundation of China under Grant Nos 11474356 and 11774422supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China
文摘Using the natural orbitals renormalization group(NORG)method,we investigate the screening of the local spin of an Anderson impurity interacting with the helical edge states in a quantum spin Hall insulator.It is found that there is a local spin formed at the impurity site and the local spin is completel.y screened by electrons in the quantum spin Hall insulator.Meanwhile,the local spin is screened dominantly by a single active natural orbital.We then show that the Kondo screening mechanism becomes transparent and simple in the framework of the natural orbitals formalism.We project the active natural orbital respectively into real space and momentum space to characterize its structure.We conilrm the spin-momentum locking property of the edge states based on the occupancy of a Bloch state on the edge to which the impurity couples.Furthermore,we study the dynamical property of the active natural orbital represented by the local density of states,from which we observe the Kondo resonance peak.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in Universities,China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674041,91630205,11474144,and 11847301)Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2017jcyjAX0084)FRF for the Central Universities(Grant No.2019CDJDWL0005)
文摘For the numerical simulation of the fractional quantum Hall(FQH) effects on a finite disk, the rotational symmetry is the only symmetry that is used in diagonalizing the Hamiltonian. In this work, we propose a method of using the weak translational symmetry for the center of mass of the many-body system. With this approach, the bulk properties, such as the energy gap and the magneto-roton excitation are consistent with those in the closed manifolds like the sphere and torus. As an application, we consider the FQH phase and its phase transition in the fast rotated dipolar fermions. We thus demonstrate the disk geometry having versatility in analyzing the bulk properties beside the usual edge physics.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0300601 and 2017YFA0303304)the National Natural Science Foundation of China(Grant Nos.11874071,11774005,and 11974026)Beijing Academy of Quantum Information Sciences,China(Grant No.Y18G22)
文摘The electronic Fabry–Pérot interferometer operating in the quantum Hall regime may be a promising tool for probing edge state interferences and studying the non-Abelian statistics of fractionally charged quasiparticles. Here we report on realizing a quantum Hall Fabry–Pérot interferometer based on monolayer graphene. We observe resistance oscillations as a function of perpendicular magnetic field and gate voltage both on the electron and hole sides. Their Coulomb-dominated origin is revealed by the positive(negative) slope of the constant phase lines in the plane of magnetic field and gate voltage on the electron(hole) side. Our work demonstrates that the graphene interferometer is feasible and paves the way for the studies of edge state interferences since high-Landau-level and even denominator fractional quantum Hall states have been found in graphene.
基金supported by the National Basic Research Program of China (Grant Nos. 2009CB929504,2011CB922103,and 2010CB923400)the National Natural Science Foundation of China (Grant Nos. 11225420,11074110,11174125,11074109,and 91021003)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China,the US NSF (Grant Nos. DMR-0906816 and DMR-1205734)Princeton MRSEC (Grant No. DMR-0819860)
文摘The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the TR symmetry. The possibility to realize a robust QSH effect by artificial removal of the TR symmetry of the edge states is explored. As a useful tool to characterize topological phases without the TR symmetry, the spin-Chern number theory is introduced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1144721811274059+1 种基金11404278and 11447216)
文摘We theoretically investigate possible quantum Hall phases and corresponding edge states in graphene by taking a strong magnetic field, Zeeman splitting M, and sublattice potential △ into account but without spin–orbit interaction. It was found that for the undoped graphene either a quantum valley Hall phase or a quantum spin Hall phase emerges in the system, depending on relative magnitudes of M and △. When the Fermi energy deviates from the Dirac point, the quantum spin-valley Hall phase appears and its characteristic edge state is contributed only by one spin and one valley species. The metallic boundary states bridging different quantum Hall phases possess a half-integer quantized conductance, like e^2/2h or3e^2/2h. The possibility of tuning different quantum Hall states with M and △ suggests possible graphene-based spintronics and valleytronics applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in University of the Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of the Higher Education of China(Grant No.20134208110001)
文摘For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap.Generally,due to the finite size effect in QSH systems,the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum.In this paper,we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions,i.e.,the straight,bearded and asymmetry edges.The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice.For a strip Lieb lattice with two straight edges,the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum.Moreover,it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice,and no gap is opened in the edge band.It is concluded that the finite size effect of QSH states is absent in the case with the straight edges.However,in the other two cases with the bearded and asymmetry edges,the energy gap induced by the finite size effect is still opened with decreasing the width of the strip.It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms.
基金supported by the National Key Basic Research Program of China(Grant Nos.2014CB920903,2013CB921903,2011CBA00108,and 2012CB937500)the National Natural Science Foundation of China(Grant Nos.11021262,11172303,11404022,11225418,and 11174337)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20121101110046)the Excellent Young Scholars Research Fund of Beijing Institute of Technology(Grant No.2014CX04028)the Basic Research Funds of Beijing Institute of Technology(Grant No.20141842001)
文摘It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron–electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling(SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state.
基金Project supported by the Science Fund for Distinguished Young Scholars of Hunan Province(Grant No.2022J10002)the National Key Research and Development Program of China(Grant No.2021YFA1200503)the Fundamental Research Funds for the Central Universities from China。
文摘Monolayer group-VIB transition metal dichalcogenides(TMDs)feature low-energy massive Dirac fermions,which have valley contrasting Berry curvature.This nontrivial local band topology gives rise to valley Hall transport and optical selection rules for interband transitions that open up new possibilities for valleytronics.However,the large bandgap in TMDs results in relatively small Berry curvature,leading to weak valley contrasting physics in practical experiments.Here,we show that Dirac fermions with tunable large Berry curvature can be engineered in moirésuperlattice of TMD heterobilayers.These moiréDirac fermions are created in a magnified honeycomb lattice with its sublattice degree of freedom formed by two local moirépotential minima.We show that applying an on-site potential can tune the moiréflat bands into helical ones.In short-period moirésuperlattice,we find that the two moirévalleys become asymmetric,which results in a net spin Hall current.More interestingly,a circularly polarized light drives these moiréDirac fermions into quantum anomalous Hall phase with chiral edge states.Our results open a new possibility to design the moiré-scale spin and valley physics using TMD moiréstructures.
基金This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11674024 and 11504240). F. Xu acknowledges support from Shenzhen Key Lab Fund (Grant No. ZDSYS 20170228105421966).
文摘By using the Bloch eigenmode matching approach, we numerically study the evolution of individual quantum Hall edge states with respect to disorder. As demonstrated by the two-parameter renormal- ization group flow of the Hall and Thouless conductances, quantum Hall edge states with high Chern number n are completely different from that of the n = 1 case. Two categories of individual edge modes are evaluated in a quantum Hall system with high Chern number. Edge states from the lowest Landau level have similar eigenfunctions that are well localized at the system edge and independent of the Fermi energy. On the other hand, at fixed Fermi energy, the edge state from higher Landau levels exhibit larger expansion, which results in less stable quantum Hall states at high Fermi energies. By presenting the local current density distribution, the effect of disorder on eigenmode-resolved edge states is distinctly demonstrated.
基金Supported by National Natural Science Foundation of China under Grant Nos.11005002 and 11005003New Century Excellent Talent of M.O.E(NCET-11-0937)Sponsoring Program of Excellent Younger Teachers in universities in Henan Province of China under Grant No.2010GGJS-181
文摘By virtue of the two-layer picture of Pfatfian pair Hall state, a qubit representation of topological degeneracy for quasiholes excitation is displayed. The non-Abelian feature of states can be manifested readily by the new wave functions. The virtue of this approach is that one does not need to find the equalities of Pfalfians, which is a so tedious task as exemplified for the case of six quasiholes. Then the braiding matrices are also constructed readily by just permutating single-qubit states, which are unitary and hermite.