期刊文献+
共找到646篇文章
< 1 2 33 >
每页显示 20 50 100
Recent progress of colloidal quantum dot based solar cells 被引量:2
1
作者 卫会云 李冬梅 +1 位作者 郑新和 孟庆波 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期49-63,共15页
Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar c... Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar cells (QDSCs) and FbX (X = S, Se) based CQD solar cells have been achieved in recent years, and the power conversion efficiencies (PCEs) ex- ceeding 12% were reported so far. In this review, we will focus on the recent progress in CQD solar cells. We firstly summarize the advance of CQD sensitizer materials and the strategies for enhancing carrier collection efficiency in QD- SCs, including developing multi-component alloyed CQDs and core-shell structured CQDs, as well as various methods to suppress interfacial carrier recombination. Then, we discuss the device architecture development of PbX CQD based solar cells and surface/interface passivation methods to increase light absorption and carrier extraction efficiencies. Finally, a short summary, challenge, and perspective are given. 展开更多
关键词 colloidal quantum dot solar cells quantum-dot sensitized solar cells PbX quantum dot solar cells interfacial passivation
下载PDF
Surface-Modified Graphene Oxide/Lead Sulfide Hybrid Film-Forming Ink for High-Efficiency Bulk Nano-Heterojunction Colloidal Quantum Dot Solar Cells 被引量:2
2
作者 Yaohong Zhang Guohua Wu +7 位作者 Chao Ding Feng Liu Dong Liu Taizo Masuda Kenji Yoshino Shuzi Hayase Ruixiang Wang Qing Shen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期56-69,共14页
Solution-processed colloidal quantum dot solar cells(CQDSCs) is a promising candidate for new generation solar cells.To obtain stable and high performance lead sulfide(PbS)-based CQDSCs,high carrier mobility and low n... Solution-processed colloidal quantum dot solar cells(CQDSCs) is a promising candidate for new generation solar cells.To obtain stable and high performance lead sulfide(PbS)-based CQDSCs,high carrier mobility and low non-radiative recombination center density in the PbS CQDs active layer are required.In order to effectively improve the carrier mobility in PbS CQDs layer of CQDSCs,butylamine(BTA)-modified graphene oxide(BTA@GO) is first utilized in PbS-PbX2(X=I-,Br-) CQDs ink to deposit the active layer of CQDSCs through one-step spin-coating method.Such surface treatment of GO dramatically upholds the intrinsic superior hole transfer peculiarity of GO and attenuates the hydrophilicity of GO in order to allow for its good dispersibility in ink solvent.The introduction of B TA@GO in CQDs layer can build up a bulk nano-heterojunction architecture,which provides a smooth charge carrier transport channel in turn improves the carrier mobility and conductivity,extends the carriers lifetime and reduces the trap density of PbS-PbX2 CQDs film.Finally,the BTA@GO/PbS-PbX2 hybrid CQDs film-based relatively large-area(0.35 cm2) CQDSCs shows a champion power conversion efficiency of 11.7% which is increased by 23.1% compared with the control device. 展开更多
关键词 quantum dot solar cells PbS colloidal quantum dots Hole extraction Graphene oxide Surface modified
下载PDF
Higher open-circuit voltage set by cobalt redox shuttle in SnO_2 nanofibers-sensitized CdTe quantum dot solar cells 被引量:1
3
作者 Gautam E.Unni Soorya Sasi A.Sreekumaran Nair 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期481-488,共8页
In this study, we report an efficient CdTe-SnOquantum dot(QD) solar cell fabricated by heat-assisted drop-casting of hydrothermally synthesized CdTe QDs on electrospun SnOnanofibers. The as-prepared QDs and SnOnanof... In this study, we report an efficient CdTe-SnOquantum dot(QD) solar cell fabricated by heat-assisted drop-casting of hydrothermally synthesized CdTe QDs on electrospun SnOnanofibers. The as-prepared QDs and SnOnanofibers were characterized by dynamic light scattering(DLS), UV–Vis spectroscopy,photoluminescence(PL) spectra, X-ray diffraction(XRD) and transmission electron microscopy(TEM). The SnOnanofibers deposited on fluorine-doped tin oxide(SnO) and sensitized with the CdTe QDs were assembled into a solar cell by sandwiching against a platinum(Pt) counter electrode in presence of cobalt electrolyte. The efficiency of cells was investigated by anchoring QDs of varying sizes on SnO. The best photovoltaic performance of an overall power conversion efficiency of 1.10%, an open-circuit voltage(Voc)of 0.80 V, and a photocurrent density(JSC) of 3.70 m A/cmwere obtained for cells with SnOthickness of5–6 μm and cell area of 0.25 cmunder standard 1 Sun illumination(100 m W/cm). The efficiency was investigated for the same systems under polysulfide electrolyte as well for a comparison. 展开更多
关键词 quantum dot solar cells(QDSCs) Electrospinning Cadmium telluride(CdTe) Tin oxide(SnO_2) NANOFIBERS Cobalt complex redox electrolyte
下载PDF
Development of a quantum-dot-labelled magnetic immunoassay method for circulating colorectal cancer cell detection 被引量:6
4
作者 Maria Gazouli Anna Lyberopoulou +5 位作者 Pericles Pericleous Spyros Rizos Gerassimos Aravantinos Nikolaos Nikiteas Nicholas P Anagnou Efstathios P Efstathopoulos 《World Journal of Gastroenterology》 SCIE CAS CSCD 2012年第32期4419-4426,共8页
AIM:To detect of colorectal cancer(CRC) circulating tumour cells(CTCs) surface antigens,we present an assay incorporating cadmium selenide quantum dots(QDs) in these paper.METHODS:The principle of the assay is the imm... AIM:To detect of colorectal cancer(CRC) circulating tumour cells(CTCs) surface antigens,we present an assay incorporating cadmium selenide quantum dots(QDs) in these paper.METHODS:The principle of the assay is the immunomagnetic separation of CTCs from body fluids in conjunction with QDs,using specific antibody biomarkers:epithelial cell adhesion molecule antibody,and monoclonal cytokeratin 19 antibody.The detection signal was acquired from the fluorescence signal of QDs.For the evaluation of the performance,the method under study was used to isolate the human colon adenocarcinoma cell line(DLD-1) and CTCs from CRC patients' peripheral blood.RESULTS:The minimum detection limit of the assay was defined to 10 DLD-1 CRC cells/mL as fluorescence was measured with a spectrofluorometer.Fluorescenceactivated cell sorting analysis and Real Time RT-PCR,they both have also been used to evaluate the performance of the described method.In conclusion,we developed a simple,sensitive,efficient and of lower cost(than the existing ones) method for the detection of CRC CTCs in human samples.We have accomplished these results by using magnetic bead isolation and subsequent QD fluorescence detection.CONCLUSION:The method described here can be easily adjusted for any other protein target of either the CTC or the host. 展开更多
关键词 Circulating tumor cells Cancer quantum dots Nanoprobes Micrometastasis
下载PDF
CdS Quantum Dots-sensitized TiO_2 Nanotube Arrays for Solar Cells 被引量:1
5
作者 隋小涛 TAO Haizheng +4 位作者 LOU Xianchun WANG Xuelai FENG Jiamin ZENG Tao 赵修建 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期17-21,共5页
CdS quantum dots(QDs) sensitized TiO2 nanotube arrays photoelectrodes were investigated for their photovoltaic performance of quantum dots-sensitized solar cells. The highly ordered TiO2 nanotube arrays(TNAs) were... CdS quantum dots(QDs) sensitized TiO2 nanotube arrays photoelectrodes were investigated for their photovoltaic performance of quantum dots-sensitized solar cells. The highly ordered TiO2 nanotube arrays(TNAs) were synthesized on Ti foils by anodic oxidation method. Then CdS quantum dots were deposited onto the TiO2 nanotube arrays by successive ionic layer absorption and reaction(SILAR) method to serve as the sensitizers. Cd(NO3)2 and Na2S were used as the precursor materials of Cd+ and S2- ions, respectively. It is found that the CdS QDs sensitizer may significantly increase the light response of TiO2 nanotube arrays. With increasing CdS QDs deposition cycles, the visible light response increases. Maximum photocurrent was obtained for the QDs that have an absorption peak at about 500 nm. Under AM 1.5 G illuminations(100 mW cm^-2), a 4.85 mA/cm^2 short circuit current density was achieved, and the maximium energy conversion efficiency of the asprepared CdS QDs-sensitized TNAs solar cells was obtained as high as 0.81% at five SILAR cycles. 展开更多
关键词 quantum dots sensitized solar cell successive ionic layer adsorption and reaction TiO2 vnanotube arrays
下载PDF
Recent Development of Quantum Dot Deposition in Quantum Dot-Sensitized Solar Cells 被引量:1
6
作者 Ziwei Li Zhenxiao Pan Xinhua Zhong 《Transactions of Tianjin University》 EI CAS 2022年第5期374-384,共11页
As new-generation solar cells,quantum dot-sensitized solar cells(QDSCs)have the outstanding advantages of low cost and high theoretical efficiency;thus,such cells receive extensive research attention.Their power conve... As new-generation solar cells,quantum dot-sensitized solar cells(QDSCs)have the outstanding advantages of low cost and high theoretical efficiency;thus,such cells receive extensive research attention.Their power conversion efficiency(PCE)has increased from 5%to over 15%in the past decade.However,compared with the theoretical efficiency(44%),the PCE of QDSCs still needs further improvement.The low loading amount of quantum dots(QDs)is a key factor limiting the improvement of cell efficiency.The loading amount of QDs on the surface of the substrate film is important for the performance of QDSCs,which directly affects the light-harvesting ability of the device and interfacial charge recombination.The optimization of QD deposition and the improvement of the loading amount are important driving forces for the rapid development of QDSCs in recent years and a key breakthrough in future development.In this paper,the research progress of QD deposition on the surface of substrate films in QDSCs was reviewed.In addition,the main deposition methods and their advantages and disadvantages were discussed,and future research on the further increase in loading amount was proposed. 展开更多
关键词 quantum dot-sensitized solar cells quantum dot deposition Capping ligand-induced self-assembly Secondary deposition
下载PDF
Synthesis of Fluorescent Carbon Quantum Dots and Their Application in the Plant Cell Imaging 被引量:2
7
作者 DING Liyun LI Junli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1546-1550,共5页
Carbon quantum dots(CQDs) exhibit tremendous advantages for plant growth study due to its strong fluorescence and good biocompatibility. The fluorescent CQDs were synthesized by the onestep microwave method with the r... Carbon quantum dots(CQDs) exhibit tremendous advantages for plant growth study due to its strong fluorescence and good biocompatibility. The fluorescent CQDs were synthesized by the onestep microwave method with the raw materials of citric acid(CA) and urea(UR), and expressed a unique green fluorescence with the optimal excitation wavelength of over 400 nm through adjusting the doping of N elements. It is demonstrated that CQDs can act as deliver media in plant and fluorescent probes for plant cell imaging through directly cultivated in the seedlings of melon and wheat, respectively. Based on the effects of the fluorescent CQDs on plants growth, we can further study the mechanisms of the ions transport in plants. 展开更多
关键词 carbon quantum dots plant cell imaging microwave method
下载PDF
ZnSe quantum dots downshifting layer for perovskite solar cells 被引量:1
8
作者 Bei Wang Bo Li +2 位作者 Ting Shen Mengjie Li Jianjun Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期736-741,共6页
To date, the instability of organometal halide perovskite solar cells(PSCs) has become the focus issue that limits the development and long-term application of PSCs. Both the ultraviolet(UV) rays in sunlight and m... To date, the instability of organometal halide perovskite solar cells(PSCs) has become the focus issue that limits the development and long-term application of PSCs. Both the ultraviolet(UV) rays in sunlight and moisture in air can significantly accelerate the disintegration of the perovskite. Here, we introduced a Zn Se quantum dots layer as downshifting materials, which was spin-coated onto the backside of PSCs.This layer converted the UV rays into visible light to prevent the destruction of PSCs as well as increase the light harvesting of the perovskite layer. Under the UV irradiation in the moisture ambient(40%), the destruction speed of the unencapsulated perovskite films were also delayed evidently. In addition, the power conversion efficiency(PCE) of the PSCs was increased from 16.6% to 17.3% due to the increase of the visible light absorbance of the perovskite. 展开更多
关键词 ZnSe quantum dots Perovskite solar cells Downshifting Stability
下载PDF
Composite Semiconductor Quantum Dots CdSe/CdS Co-sensitized TiO_2 Nanorod Array Solar Cells 被引量:1
9
作者 汪竞阳 章天金 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期876-880,共5页
CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption... CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption and reaction (SILAR) process. The structural and morphological properties of the samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The results indicate that CdSe/CdS QDs are uniformly coated on the surface of the TiO2 nanorods. The shift of light absorption edge was monitored by taking UV-visible absorption spectra. Compared with the absorption spectra of the TiO2 nanorod array, deposition of CdSe/CdS QDs shifts the absorption edge to the higher wavelength. The enhanced light absorption in the visible-light region of CdSe/CdS/TiO2 nanorod array indicates that CdSe/CdS layers can act as co-sensitizers in quantum dots sensitized solar cells (QDSSCs). By optimizing the CdSe layer deposition cycles, a photocurrent of 5.78 mA/cm2, an open circuit photovoltage of 0.469 V and a conversion efficiency of 1.34 % were obtained under an illumination of 100 mw/cm2. 展开更多
关键词 quantum dots TiO2 nanorod array solar cells photovoltaic performance
下载PDF
Direct Observation of Carrier Transportation Process in InGaAs/GaAs Multiple Quantum Wells Used for Solar Cells and Photodetectors 被引量:1
10
作者 孙庆灵 王禄 +7 位作者 江洋 马紫光 王文奇 孙令 王文新 贾海强 周均铭 陈弘 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期103-106,共4页
The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and witho... The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure. 展开更多
关键词 INGAAS on of Direct Observation of Carrier Transportation Process in InGaAs/GaAs Multiple quantum Wells Used for Solar cells and Photodetectors in for
下载PDF
A series of conducting gel electrolytes for quasi-solid-state quantum dot-sensitized solar cells with boosted electron transfer processes
11
作者 Qiming Yang Wen Yang +1 位作者 Jialong Duan Peizhi Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期335-341,共7页
To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective b... To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective by quasi-solid-state quantum dot-sensitized solar cells from a series of conducting gel electrolytes composed of polyacrylamide(PAAm) matrix and conductive polymers [polyaniline(PANi), polypyrrole(PPy) or polythiophene(PT)]. The reduction of Sx2- occurred in both interface and three dimensional framework of conducting gel electrolyte as a result of the electrical conduction of PANi, PPy and PT toward refluxed electrons from external circuit to Pt electrode. The resulting solar cells can yield the solarto-electrical conversion efficiency of 2.33%, 2.25% and 1.80% for PANi, PPy and PT based gel electrolytes,respectively. Those solar cells possessed much higher efficiency than that of 1.74% based on pure PAAm gel electrolyte owing to the enhanced kinetics for Sx2- ? S2- conversion. More importantly, the stability of quasi-solid-state solar cell is significantly advanced, arising from the localization of liquid electrolyte into the three dimensional framework and therefore reduced leakage and volatilization. 展开更多
关键词 quantum dot-sensitized solar cells Conducting gel electrolyte Charge transfer Stability Micropomus structure
下载PDF
Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide
12
作者 Ali Badawi 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期372-377,共6页
The photovoltaic performance of CdS quantum dots sensitized solar cells (QDSSCs) using the 0.2 wt% of reduced graphene oxide and TiO2 nanoparticles (RGO+TiO2 nanocomposite) photoanode is investigated. CdS QDs are... The photovoltaic performance of CdS quantum dots sensitized solar cells (QDSSCs) using the 0.2 wt% of reduced graphene oxide and TiO2 nanoparticles (RGO+TiO2 nanocomposite) photoanode is investigated. CdS QDs are adsorbed onto RGO+TiO2 nanocomposite films by the successive ionic layer adsorption and reaction (SILAR) technique for several cycles. The current density-voltage (J-V) characteristic curves of the assembled QDSSCs are measured at AM1.5 simulated sunlight. The optimal photovoltaic performance for CdS QDSSC was achieved for six SILAR cycles. Solar cells based on the RGO+TiO2 nanocomposite photoanode achieve a 33% increase in conversion efficiency (η) compared with those based on plain TiO2 nanoparticle (NP) photoanodes. The electron back recombination rates decrease significantly for CdS QDSSCs based on RGO+TiO2 nanocomposite photoanodes. The lifetime constant (τ) for CdS QDSSC based on the RGO+TiO2 nanocomposite photoanode is at least one order of magnitude larger than that based on the bare TiO2NPs photoanode. 展开更多
关键词 reduced graphene oxide nanocomposite photoanode back recombination rate quantum dots sensitized solar cell
下载PDF
Efficient quantum dot sensitized solar cells via improved loading amount management
13
作者 Wei Wang Yiling Xie +3 位作者 Fangfang He Yuan Wang Weinan Xue Yan Li 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期213-223,共11页
High light-harvesting efficiency and low interfacial charge transfer loss are essential for the fabrication of high-efficiency quantum dot-based solar cells(QDSCs). Increasing the thickness of mesoporous TiO2films can... High light-harvesting efficiency and low interfacial charge transfer loss are essential for the fabrication of high-efficiency quantum dot-based solar cells(QDSCs). Increasing the thickness of mesoporous TiO2films can improve the loading of pre-synthesized QDs on the film and enhance the absorbance of photoanode, but commonly accompanied by the increase in the unfavorable charge recombination due to prolonged electron transmission paths. Herein, we systematically studied the influence of the balance between QD loading and TiO2film thickness on the performance of QDSCs. It is found that the relative thin photoanode prepared by the cationic surfactant-assisted multiple deposition procedure has achieved a high QD loading which is comparable to that of the thick photoanode commonly used. Under AM 1.5G illumination, Zn–Cu–In–Se and Zn–Cu–In–S based QDSCs with optimized 11.8 μm photoanodes show the PCE of 10.03% and 8.53%, respectively, which are comparable to the corresponding highest PCE of Zn–Cu–In–Se and Zn–Cu–In–S QDSCs(9.74% and 8.75%) with over 25.0 μm photoanodes. Similarly, an impressive PCE of 6.14% was obtained for the CdSe based QDSCs with a 4.1 μm photoanode, which is slightly lower than the best PCE(7.05%)of reference CdSe QDSCs with 18.1 μm photoanode. 展开更多
关键词 quantum dot sensitized solar cell PHOTOANODE Loading amount Surfactant-assisted deposition
下载PDF
InxGa1-xN/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77%
14
作者 刘侍明 肖红领 +5 位作者 王权 闫俊达 占香蜜 巩稼民 王晓亮 王占国 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期185-188,共4页
We report on fabrication and photovoltaic characteristics of InxGa1-xN/GaN multiple quantum well solar cells with different indium compositions and barrier thicknesses. The as-grown samples are characterized by high- ... We report on fabrication and photovoltaic characteristics of InxGa1-xN/GaN multiple quantum well solar cells with different indium compositions and barrier thicknesses. The as-grown samples are characterized by high- resolution x-ray diffraction and reciprocal space mapping. The results show that the sample with a thick barrier thickness (lO.Onm) and high indium composition (0.23) has better crystalline quality. In addition, the dark current density-voltage (J-V) measurement of this device shows a significant decrease of leakage current, which leads to high open-circuit voltage Vow. Through the J-V characteristics under an Air Mass 1.5 Global (AM 1.5 G) illumination, this device exhibits a Voc of 1.89 V, a short-circuit current density Ysc of 3.92mA/cm2 and a fill factor of 50.96%. As a result, the conversion efficiency (77) is enhanced to be 3.77% in comparison with other devices. 展开更多
关键词 GAN In_xGa x)N/GaN Multiple quantum Well Solar cells with Conversion Efficiency of 3.77
下载PDF
In Vitro Invasive Pattern of Hepatocellular Carcinoma Cell Line HCCLM9 Based on Three-dimensional Cell Culture and Quantum Dots Molecular Imaging 被引量:7
15
作者 方敏 彭春伟 +2 位作者 刘少平 袁静萍 李雁 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2013年第4期520-524,共5页
Summary: This study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. ... Summary: This study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. Each well of the 24-well cell culture plate was cover-slipped. Matrigel diluted with se- rum-free DMEM was added and HCCLM9 cells were cultured on the Matrigel. The cell morphological and cell growth characteristics were observed by inverted microscopy and laser confocal microscopy at different culture time. Cell invasive features were monitored by QDs-based real-time molecular imaging techniques. The results showed that on this 3D cell culture platform, HCCLM9 cells exhibited typical multi-step invasive behaviors, including reversion of cell senescence, active focal proliferation and dominant clones invasion. During the process, cells under 3D cell culture showed biological behaviors of spatio-temporal characteristics. Cells first merged on the surface of matrix, then gradually infiltrated and migrated into deep part of matrix, presenting polygonal morphology with stretched protrusions, forming tubular, annular and even network structure, which suggested that HCC cells have the morpho- logical basis for vasculogenic mimicry. In addition, small cell clones with their edges well-circumscribed in early stage, progressed into a large irregular clone with ill-defined edge, while the other cells developed invadopodia. And QDs probing showed MT1-MMP was strongly expressed in the invadopodia. These findings indicate that a novel 3D cell culture platform has been successfully estab- lished, which can mimic the in vivo tumor microenvironment, and when combined with QDs-based mo- lecular imaging, it can help to better investigate the invasive behaviors of HCC cells. 展开更多
关键词 3D cell culture tumor microenvironment tumor invasion quantum dots
下载PDF
Delta-doped quantum wire tunnel junction for highly concentrated solar cells
16
作者 Ali Bahrami Mahyar Dehdast +1 位作者 Shahram Mohammadnejad Habib Badri Ghavifekr 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第4期275-279,共5页
We propose a novel structure for tunnel junction based on delta-doped AlGaAs/GaAs quantum wires. Higher spatial confinement of quantum wires alongside the increased effective doping concentration in the delta-doped re... We propose a novel structure for tunnel junction based on delta-doped AlGaAs/GaAs quantum wires. Higher spatial confinement of quantum wires alongside the increased effective doping concentration in the delta-doped regions extremely increase the peak tunneling current and enhance the performance of tunnel junction. The proposed structure can be used as tunnel junction in the multijunction solar cells under the highest possible thermodynamically limited solar concentration.The combination of the quantum wire with the delta-doped structure can be of benefit to the solar cells' advantages including higher number of sub-bands and high degeneracy. Simulation results show a voltage drop of 40 mV due to the proposed tunnel junction used in a multijunction solar cell which presents an extremely low resistance to the achieved peak tunneling current. 展开更多
关键词 DELTA-DOPING quantum wire solar cell TUNNEL JUNCTION
下载PDF
Photovoltaics and Photoexcited Carrier Dynamics of Double-Layered CdS/CdSe Quantum Dot-Sensitized Solar Cells 被引量:1
17
作者 Taro Toyoda Yohei Onishi +3 位作者 Kenji Katayama Tsuguo Sawada Shuzi Hayase Qing Shen 《材料科学与工程(中英文A版)》 2013年第9期601-608,共8页
关键词 CDSE量子点 太阳能电池 子动力学 载流子 光伏 敏化 光生 TiO2电极
下载PDF
Novel Hybrid Ligands for Passivating Pb S Colloidal Quantum Dots to Enhance the Performance of Solar Cells
18
作者 Yuehua Yang Baofeng Zhao +6 位作者 Yuping Gao Han Liu Yiyao Tian Donghuan Qin Hongbin Wu Wenbo Huang Lintao Hou 《Nano-Micro Letters》 SCIE EI CAS 2015年第4期325-331,共7页
We developed novel hybrid ligands to passivate Pb S colloidal quantum dots(CQDs),and two kinds of solar cells based on as-synthesized CQDs were fabricated to verify the passivation effects of the ligands.It was found ... We developed novel hybrid ligands to passivate Pb S colloidal quantum dots(CQDs),and two kinds of solar cells based on as-synthesized CQDs were fabricated to verify the passivation effects of the ligands.It was found that the ligands strongly affected the optical and electrical properties of CQDs,and the performances of solar cells were enhanced strongly.The optimized hybrid ligands,oleic amine/octyl-phosphine acid/Cd Cl2improved power conversion efficiency(PCE)to much higher of 3.72%for Schottky diode cell and 5.04%for p–n junction cell.These results may be beneficial to design passivation strategy for low-cost and high-performance CQDs solar cells. 展开更多
关键词 PBS Colloidal quantum dot Solar cells LIGANDS
下载PDF
Assessment of Toxicity of BSA-conjugated Zinc Oxide Quantum Dots for C2C12 Cells
19
作者 CHEN Zhi WU Dudu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期736-743,共8页
Colloidal semiconductor nanoparticles (quantum dots, QDs) have attracted a lot of interests in numerous biological and medical applications due to their potent fluorescent properties. However, the possible toxic effec... Colloidal semiconductor nanoparticles (quantum dots, QDs) have attracted a lot of interests in numerous biological and medical applications due to their potent fluorescent properties. However, the possible toxic effects of quantum dots remain an issue of debate. In this study, we aimed to evaluate the cytocompatibility of bovine serum albumin (BSA) conjugated zinc oxide QDs for C2C12 cells. In the experiment, ZnO QDs were synthesized by using BSA as the structure directing agent, and the morphology and crystal phase of ZnO QDs were determined by transmission electron microscopy, X-ray diffractograms and Fourier transform infrared spectrograph techniques. The inverted fluorescence microscope results showed that ZnO QDs were distributed inside the cells. The toxicity of ZnO QDs was assessed by MTT methods, which revealed that ZnO QDs were highly cytocompatible in the concentration less than 200 μM. However, when the concentration of QDs was higher than 1 000 μM ZnO QDs showed significantly toxicity, which was ascribed to generation of free zinc and formation of reactive oxygen species (ROS). Furthermore, the morphological observations exhibited that cells treated with ZnO QDs showed altered morphology, depolymerized cytoskeleton and irregular-shaped nuclei. This study provides helpful guidances on the future safe use and manipulation of QDs to make them suitable tools in nanomedicine. 展开更多
关键词 zinc oxide BOVINE serum ALBUMIN quantum DOTS TOXICITY cells
下载PDF
Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model
20
作者 张雅 李莲 +1 位作者 姜巍 易林 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第7期720-726,共7页
A one dimensional quantum-hydrodynamic/particle-in-cell (QHD/PIC) model is used to study the interaction process of an intense proton beam (injection density of 1017 cm-3) with a dense plasma (initial density of ... A one dimensional quantum-hydrodynamic/particle-in-cell (QHD/PIC) model is used to study the interaction process of an intense proton beam (injection density of 1017 cm-3) with a dense plasma (initial density of -10^21 cm^-3), with the PIC method for simulating the beam particle dynamics and the QHD model for considering the quantum effects including the quantum statistical and quantum diffraction effects. By means of the QHD theory, the wake electron density and wakefields are calculated, while the proton beam density is calculated by the PIC method and compared to hydrodynamic results to justify that the PIC method is a more suitable way to simulate the beam particle dynamics. The calculation results show that the incident continuous proton beam when propagating in the plasma generates electron perturbations as well as wakefields oscillations with negative valleys and positive peaks where the proton beams are repelled by the positive wakefields and accelerated by the negative wakefields. Moreover, the quantum correction obviously hinders the electron perturbations as well as the wakefields. Therefore, it is necessary to consider the quantum effects in the interaction of a proton beam with cold dense plasmas, such as in the metal films. 展开更多
关键词 proton beam PARTICLE-IN-cell quantum hydrodynamics wake field
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部