A quantum chain model of multiple molecule motors is proposed as a mathematical physics theory for the microscopic modeling of classical force-velocity relation and tension transients in muscle fibers. The proposed mo...A quantum chain model of multiple molecule motors is proposed as a mathematical physics theory for the microscopic modeling of classical force-velocity relation and tension transients in muscle fibers. The proposed model was a quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibers, which has not yet been empirically defined and was much more complicated than the hyperbolic relationships. Using the same Hamiltonian model, a mathematical force-velocity relationship was proposed to explain the tension observed when the muscle was stimulated with an alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency could be explained physically by the Doppler effect in this quantum chain model. Further more, quantum physics phenomena were applied to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transient curves were found to correspond to the theoretical output of quantum two- and three-level models. Mathematical modeling electric stimulus as photons exciting a quantum three-level particle reproduced most of the tension transient curves of water bug Lethocerus maximus.展开更多
Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. ...Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. When DSOC is considered in a chain which also has Rashba spin-orbit coupling(RSOC) of the same magnitude, the total conductance is the same as that for the same chain with no SOC. However, when the two types of SOC have different values, there results a unique anisotropic conductance.展开更多
In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The...In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The results reveled that acetyl residues of KGM were bonded with water molecules in aqueous solutions. Increasing the hydrogen bond formation decreases the energy in acetyl system. The expect-valuation of the thermal state with respect to the Hamiltonian is negative. Hence, the total energy of konjac glucomnnan chain with the acetyl groups decreases, which indicates the increasing stability of konjac glucomnnan chain. Our approach could provide a new insight into the investigation on the stability of konjac glucomnnan chain.展开更多
We study the phenomenon of decoherence during the operation of one qubit transformation, controlled-not (CNOT) and controlled-controlled-not (C2NOT) quantum gates in a quantum computer model formed by a linear chain o...We study the phenomenon of decoherence during the operation of one qubit transformation, controlled-not (CNOT) and controlled-controlled-not (C2NOT) quantum gates in a quantum computer model formed by a linear chain of three nuclear spins system. We make this study with different type of environments, and we determine the associated decoherence time as a function of the dissipative parameter. We found that the dissipation parameter to get a well defined quantum gates (without significant decoherence) must be within the range of . We also study the behavior of the purity parameter for these gates and different environments and found linear or quadratic decays of this parameter depending on the type of environments.展开更多
We construct an integrable quantum spin chain that includes the nearest-neighbor,next-nearest-neighbor,chiral threespin couplings,Dzyloshinsky–Moriya interactions and unparallel boundary magnetic fields.Although the ...We construct an integrable quantum spin chain that includes the nearest-neighbor,next-nearest-neighbor,chiral threespin couplings,Dzyloshinsky–Moriya interactions and unparallel boundary magnetic fields.Although the interactions in bulk materials are isotropic,the spins nearby the boundary fields are polarized,which induce the anisotropic exchanging interactions of the first and last bonds.The U(1)symmetry of the system is broken because of the off-diagonal boundary reflections.Using the off-diagonal Bethe ansatz,we obtain an exact solution to the system.The inhomogeneous T–Q relation and Bethe ansatz equations are given explicitly.We also calculate the ground state energy.The method given in this paper provides a general way to construct new integrable models with certain interesting interactions.展开更多
We investigate the quantum discord of a two-qubit anisotropy XXZ Heisenberg chain with Dzyaloshinskii-Moriya (DM) interaction under magnetic field. It is shown that the quantum discord highly depends on the system’s ...We investigate the quantum discord of a two-qubit anisotropy XXZ Heisenberg chain with Dzyaloshinskii-Moriya (DM) interaction under magnetic field. It is shown that the quantum discord highly depends on the system’s temperature T, DM interaction D, homogenous magnetic field B and the anisotropy Δ. For lower temperature T, by modulating D and B, the quantum discord can be controlled and the quantum discord switch can be realized.展开更多
We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more rob...We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.展开更多
In this paper, we quantitatively study the quantum diffusion in a bilateral doped chain, which is randomly doped on both sides. A tight binding approximation and quantum dynamics are used to calculate the three electr...In this paper, we quantitatively study the quantum diffusion in a bilateral doped chain, which is randomly doped on both sides. A tight binding approximation and quantum dynamics are used to calculate the three electronic characteristics: autocorrelation function C(t), the mean square displacement d(t) and the participation number P(E) in different doping situations. The results show that the quantum diffusion is more sensitive to the small ratio of doping than to the big one, there exists a critical doping ratio qo, and C(t), d(t) and P(E) have different variation trends on different sides of qo. For the self-doped chain, the doped atoms have tremendous influence on the central states of P(E), which causes the electronic states distributed in other energy bands to aggregate to the central band (E = 0) and form quasi-mobility edges there. All of the doped systems experience an incomplete transition of metal-semiconductor-metal.展开更多
Decent hot-start effects were here reported in Taq DNA polymerase-based polymerase chain reaction (PCR) when water-soluble CdTe quantum dots (QDs) were employed. The hot-start effects were revealed by the higher ampli...Decent hot-start effects were here reported in Taq DNA polymerase-based polymerase chain reaction (PCR) when water-soluble CdTe quantum dots (QDs) were employed. The hot-start effects were revealed by the higher amplicon yields and distinguished suppression of nonspecific amplification after pre-incubation of PCR mix with quantum dots between 30°C and 56°C. DNA targets were well amplified even after PCR mixture was pre-incubated 3 hr at 30°C or 1 hr at 50°C. Importantly, the effects of QDs nanoparticles could be reversed by increasing the polymerase concentration, suggesting that there was an interaction between QDs and Taq DNA polymerase. Moreover, control experiment indicated that hot-start effect is not primarily due to the reduced polymerase concentration resulted from the above interaction. This study provided another good start to investigate potential implications of quantum dots in key molecular biology techniques.展开更多
We investigate the properties of thermal quantum correlations in an infinite spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya(DM) interaction. The thermal quantum discord(TQD) and the thermal ent...We investigate the properties of thermal quantum correlations in an infinite spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya(DM) interaction. The thermal quantum discord(TQD) and the thermal entanglement(TE)are discussed as two kinds of important methods to measure the quantum correlation, respectively. It is found that DM interaction plays an important role in the thermal quantum correlations of the system. It can enhance the thermal quantum correlations by increasing DM interaction. Furthermore, the thermal quantum correlations can be promoted by tuning the external magnetic field and the Heisenberg coupling parameter in the antiferromagnetic system. It is shown that the behaviors of TQD differ from those of TE. TQD is more robust against decoherence than TE. For the measurement of TQD, the "regrowth" phenomenon occurs in the ferromagnetic system. We also find that the anisotropy favors the thermal quantum correlations of the system with weak DM interaction.展开更多
In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the qua...In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.展开更多
We consider an entangled Ising-XY Z diamond chain structure. Quantum correlations for this model are inves- tigated by using quantum discord and trace distance discord. Quantum correlations are obtained for different ...We consider an entangled Ising-XY Z diamond chain structure. Quantum correlations for this model are inves- tigated by using quantum discord and trace distance discord. Quantum correlations are obtained for different values of the anisotropy parameter, magnetic field and temperature. By comparison between quantum correlations, we show that the trace distance discord is always larger than quantum discord. Finally, some novel effects such as increasing the quantum correlations with temperature and constructive role of anisotropy parameter, which may play to the quantum correlations, are observed.展开更多
Adopting the Milburn decoherence model, we investigate the performance of quantum Fisher information of the twoqutrit isotropic Heisenberg XY chain under decoherence. We find that the quantum Fisher information with r...Adopting the Milburn decoherence model, we investigate the performance of quantum Fisher information of the twoqutrit isotropic Heisenberg XY chain under decoherence. We find that the quantum Fisher information with respect to the decoherence rate and the magnetic field decreases exponentially in the long-time limit, which significantly reduces the precision of optimal quantum estimation. We also show that with the increase of the decoherence rate or the magnetic field,the QFIs go down considerably. Furthermore, we find that the precision of optimal quantum estimation can be enhanced by the entanglement in the input state.展开更多
We propose a mechanism for perfect entanglement transport in anti-ferromagnetic (AFM) quantum spin chain systems with modulated exchange coupling and also for the modulation of on-site magnetic field. We use the princ...We propose a mechanism for perfect entanglement transport in anti-ferromagnetic (AFM) quantum spin chain systems with modulated exchange coupling and also for the modulation of on-site magnetic field. We use the principle of adiabatic quantum pumping process for entanglement transfer in the spin chain systems. We achieve the perfect entanglement transfer over an arbitrarily long distance and a better entanglement transport for longer AFM spin chain system than for the ferromagnetic one. We explain analytically and physically—why the entanglement hops in alternate sites. We find the condition for blocking of entanglement transport even in the perfect pumping situation. Our analytical solution interconnects quantum many body physics and quantum information science.展开更多
A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If ...A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If two quantum dots are added on each side of the PCDQD system, additional Breit Wigner and Fano resonances occur in the conductance spectra. If quantum dots are added on one side of the system, small Fano resonances can be observed in the conductance spectra. Adjusting the number of side-coupled quantum dots, the anti-resonance bands emerge at different positions, which makes the system applicable as a quantum switching device. Moreover, the I-V characteristic curve presents the step characteristic and the width of the step decreases with increasing the number of side-coupled quantum dots.展开更多
Quantum teleportation with entanglement channels and a series of two-qubit SWAP gates between the nearestneighbor qubits are usually utilized to achieve the transfers of unknown quantum state from the sender to the di...Quantum teleportation with entanglement channels and a series of two-qubit SWAP gates between the nearestneighbor qubits are usually utilized to achieve the transfers of unknown quantum state from the sender to the distant receiver. In this paper, by simplifying the usual SWAP gates we propose an approach to speed up the transmissions of unknown quantum information, specifically including the single-qubit unknown state and two-qubit unknown entangled ones,by a series of entangling and disentangling operations between the remote qubits with distant interactions. The generic proposal is demonstrated specifically with experimentally-existing Ising-type quantum channels without transverse interaction; liquid NMR-molecules driven by global radio frequency electromagnetic pulses and capacitively-coupled Josephson circuits driven by local microwave pulses. The proposal should be particularly useful to set up the connections between the distant qubits in a chip of quantum computing.展开更多
By use of the Hartree approximation and the method of multiple scales, we investigate quantum solitons and intrinsic localized modes in a one-dimensional antiferromagnetic chain. It is shown that there exist solitons ...By use of the Hartree approximation and the method of multiple scales, we investigate quantum solitons and intrinsic localized modes in a one-dimensional antiferromagnetic chain. It is shown that there exist solitons of two different quantum frequency bands: i.e., magnetic optical solitons and acoustic solitons. At the boundary of the Brillouin zone, these solitons becornc quantum intrinsic localized modes: their quantum eigenfrequencics are below the bottom of the harmonic optical frequency band and above the top of the harmonic acoustic frequency band.展开更多
This paper studies the discord of a bipartite two-level system coupling to an XY spin-chain environment in a transverse field and investigates the relationship between the discord property and the environment's quant...This paper studies the discord of a bipartite two-level system coupling to an XY spin-chain environment in a transverse field and investigates the relationship between the discord property and the environment's quantum phase transition. The results Show that the quantum discord is also able to characterize the quantum phase transitions. We also discuss the difference between discord and entanglement, and show that quantum discord may reveal more general information than quantum entanglement for characterizing the environment's quantum phase transition.展开更多
We study the physical properties of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields. By using a combination of numerical analysis and analytical method, we obtain the surface energy and elementary e...We study the physical properties of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields. By using a combination of numerical analysis and analytical method, we obtain the surface energy and elementary excitations of the model. It shows that the contributions of the two boundary fields to the surface energy are additive. We also find that there exists a kind of excitations related to the boundary string.展开更多
基金Project supported by the Fundamental Research Foundation for the Central Universities of China
文摘A quantum chain model of multiple molecule motors is proposed as a mathematical physics theory for the microscopic modeling of classical force-velocity relation and tension transients in muscle fibers. The proposed model was a quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibers, which has not yet been empirically defined and was much more complicated than the hyperbolic relationships. Using the same Hamiltonian model, a mathematical force-velocity relationship was proposed to explain the tension observed when the muscle was stimulated with an alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency could be explained physically by the Doppler effect in this quantum chain model. Further more, quantum physics phenomena were applied to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transient curves were found to correspond to the theoretical output of quantum two- and three-level models. Mathematical modeling electric stimulus as photons exciting a quantum three-level particle reproduced most of the tension transient curves of water bug Lethocerus maximus.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176089 and 11504083)the Foundation of Shijiazhuang University,China(Grant No.XJPT002)
文摘Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. When DSOC is considered in a chain which also has Rashba spin-orbit coupling(RSOC) of the same magnitude, the total conductance is the same as that for the same chain with no SOC. However, when the two types of SOC have different values, there results a unique anisotropic conductance.
基金supported by the Natural Science Foundation of China(31271837 and 31471704)
文摘In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The results reveled that acetyl residues of KGM were bonded with water molecules in aqueous solutions. Increasing the hydrogen bond formation decreases the energy in acetyl system. The expect-valuation of the thermal state with respect to the Hamiltonian is negative. Hence, the total energy of konjac glucomnnan chain with the acetyl groups decreases, which indicates the increasing stability of konjac glucomnnan chain. Our approach could provide a new insight into the investigation on the stability of konjac glucomnnan chain.
文摘We study the phenomenon of decoherence during the operation of one qubit transformation, controlled-not (CNOT) and controlled-controlled-not (C2NOT) quantum gates in a quantum computer model formed by a linear chain of three nuclear spins system. We make this study with different type of environments, and we determine the associated decoherence time as a function of the dissipative parameter. We found that the dissipation parameter to get a well defined quantum gates (without significant decoherence) must be within the range of . We also study the behavior of the purity parameter for these gates and different environments and found linear or quadratic decays of this parameter depending on the type of environments.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0300600 and 2016YFA0302104)the National Natural Science Foundation of China(Grant Nos.12074410,11934015,11975183,11947301,and 11774397)+2 种基金the Major Basic Research Program of Natural Science of Shaanxi Province,China(Grant Nos.2017KCT-12 and 2017ZDJC-32)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)the Fellowship of China Postdoctoral Science Foundation(Grant No.2020M680724).
文摘We construct an integrable quantum spin chain that includes the nearest-neighbor,next-nearest-neighbor,chiral threespin couplings,Dzyloshinsky–Moriya interactions and unparallel boundary magnetic fields.Although the interactions in bulk materials are isotropic,the spins nearby the boundary fields are polarized,which induce the anisotropic exchanging interactions of the first and last bonds.The U(1)symmetry of the system is broken because of the off-diagonal boundary reflections.Using the off-diagonal Bethe ansatz,we obtain an exact solution to the system.The inhomogeneous T–Q relation and Bethe ansatz equations are given explicitly.We also calculate the ground state energy.The method given in this paper provides a general way to construct new integrable models with certain interesting interactions.
文摘We investigate the quantum discord of a two-qubit anisotropy XXZ Heisenberg chain with Dzyaloshinskii-Moriya (DM) interaction under magnetic field. It is shown that the quantum discord highly depends on the system’s temperature T, DM interaction D, homogenous magnetic field B and the anisotropy Δ. For lower temperature T, by modulating D and B, the quantum discord can be controlled and the quantum discord switch can be realized.
基金supported by National Basic Research Program of China(Grant No.2013CBA01702)National Natural Science Foundation of China(Grant Nos.61377016,61575055,10974039,61307072,61308017,and 61405056)
文摘We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10974166 and 10774127)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No.708068)the Research Foundation of Education Bureau of Hunan Province of China (Grant No.09A094)
文摘In this paper, we quantitatively study the quantum diffusion in a bilateral doped chain, which is randomly doped on both sides. A tight binding approximation and quantum dynamics are used to calculate the three electronic characteristics: autocorrelation function C(t), the mean square displacement d(t) and the participation number P(E) in different doping situations. The results show that the quantum diffusion is more sensitive to the small ratio of doping than to the big one, there exists a critical doping ratio qo, and C(t), d(t) and P(E) have different variation trends on different sides of qo. For the self-doped chain, the doped atoms have tremendous influence on the central states of P(E), which causes the electronic states distributed in other energy bands to aggregate to the central band (E = 0) and form quasi-mobility edges there. All of the doped systems experience an incomplete transition of metal-semiconductor-metal.
文摘Decent hot-start effects were here reported in Taq DNA polymerase-based polymerase chain reaction (PCR) when water-soluble CdTe quantum dots (QDs) were employed. The hot-start effects were revealed by the higher amplicon yields and distinguished suppression of nonspecific amplification after pre-incubation of PCR mix with quantum dots between 30°C and 56°C. DNA targets were well amplified even after PCR mixture was pre-incubated 3 hr at 30°C or 1 hr at 50°C. Importantly, the effects of QDs nanoparticles could be reversed by increasing the polymerase concentration, suggesting that there was an interaction between QDs and Taq DNA polymerase. Moreover, control experiment indicated that hot-start effect is not primarily due to the reduced polymerase concentration resulted from the above interaction. This study provided another good start to investigate potential implications of quantum dots in key molecular biology techniques.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘We investigate the properties of thermal quantum correlations in an infinite spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya(DM) interaction. The thermal quantum discord(TQD) and the thermal entanglement(TE)are discussed as two kinds of important methods to measure the quantum correlation, respectively. It is found that DM interaction plays an important role in the thermal quantum correlations of the system. It can enhance the thermal quantum correlations by increasing DM interaction. Furthermore, the thermal quantum correlations can be promoted by tuning the external magnetic field and the Heisenberg coupling parameter in the antiferromagnetic system. It is shown that the behaviors of TQD differ from those of TE. TQD is more robust against decoherence than TE. For the measurement of TQD, the "regrowth" phenomenon occurs in the ferromagnetic system. We also find that the anisotropy favors the thermal quantum correlations of the system with weak DM interaction.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774088)the Key Program of the National Natural Science Foundation of China (Grant No. 10534030)
文摘In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.
基金Supported by the Azerbaijan Shahid Madani University
文摘We consider an entangled Ising-XY Z diamond chain structure. Quantum correlations for this model are inves- tigated by using quantum discord and trace distance discord. Quantum correlations are obtained for different values of the anisotropy parameter, magnetic field and temperature. By comparison between quantum correlations, we show that the trace distance discord is always larger than quantum discord. Finally, some novel effects such as increasing the quantum correlations with temperature and constructive role of anisotropy parameter, which may play to the quantum correlations, are observed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11365006 and 11565010)Guizhou Province Science and Technology Innovation Talent Team,China(Grant No.(2015)4015)+2 种基金Innovation Team Foundation of the Education Department of Guizhou Province,China(Grant No.[2014]35)the Natural Science Foundation of Guizhou Province,China(Grant No.QKHLHZ[2015]7767)High Level Creative Talents,China(Grant No.(2016)-4008)
文摘Adopting the Milburn decoherence model, we investigate the performance of quantum Fisher information of the twoqutrit isotropic Heisenberg XY chain under decoherence. We find that the quantum Fisher information with respect to the decoherence rate and the magnetic field decreases exponentially in the long-time limit, which significantly reduces the precision of optimal quantum estimation. We also show that with the increase of the decoherence rate or the magnetic field,the QFIs go down considerably. Furthermore, we find that the precision of optimal quantum estimation can be enhanced by the entanglement in the input state.
文摘We propose a mechanism for perfect entanglement transport in anti-ferromagnetic (AFM) quantum spin chain systems with modulated exchange coupling and also for the modulation of on-site magnetic field. We use the principle of adiabatic quantum pumping process for entanglement transfer in the spin chain systems. We achieve the perfect entanglement transfer over an arbitrarily long distance and a better entanglement transport for longer AFM spin chain system than for the ferromagnetic one. We explain analytically and physically—why the entanglement hops in alternate sites. We find the condition for blocking of entanglement transport even in the perfect pumping situation. Our analytical solution interconnects quantum many body physics and quantum information science.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11447132 and 11504042the Chongqing Science and Technology Commission Project under Grant Nos cstc2014jcyj A00032 and cstc2016jcyj A1158the Scientific Research Project for Advanced Talents of Yangtze Normal University under Grant No 2017KYQD09
文摘A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If two quantum dots are added on each side of the PCDQD system, additional Breit Wigner and Fano resonances occur in the conductance spectra. If quantum dots are added on one side of the system, small Fano resonances can be observed in the conductance spectra. Adjusting the number of side-coupled quantum dots, the anti-resonance bands emerge at different positions, which makes the system applicable as a quantum switching device. Moreover, the I-V characteristic curve presents the step characteristic and the width of the step decreases with increasing the number of side-coupled quantum dots.
基金partly supported by the National Natural Science Foundation of China(Grant No.U1330201)
文摘Quantum teleportation with entanglement channels and a series of two-qubit SWAP gates between the nearestneighbor qubits are usually utilized to achieve the transfers of unknown quantum state from the sender to the distant receiver. In this paper, by simplifying the usual SWAP gates we propose an approach to speed up the transmissions of unknown quantum information, specifically including the single-qubit unknown state and two-qubit unknown entangled ones,by a series of entangling and disentangling operations between the remote qubits with distant interactions. The generic proposal is demonstrated specifically with experimentally-existing Ising-type quantum channels without transverse interaction; liquid NMR-molecules driven by global radio frequency electromagnetic pulses and capacitively-coupled Josephson circuits driven by local microwave pulses. The proposal should be particularly useful to set up the connections between the distant qubits in a chip of quantum computing.
基金Project supported by the Natural Science Foundation of Hunan Province, China (Grant No 03JJY6008).
文摘By use of the Hartree approximation and the method of multiple scales, we investigate quantum solitons and intrinsic localized modes in a one-dimensional antiferromagnetic chain. It is shown that there exist solitons of two different quantum frequency bands: i.e., magnetic optical solitons and acoustic solitons. At the boundary of the Brillouin zone, these solitons becornc quantum intrinsic localized modes: their quantum eigenfrequencics are below the bottom of the harmonic optical frequency band and above the top of the harmonic acoustic frequency band.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10905007 and 61078011)the Fundamental Research Funds for the Central Universities,China
文摘This paper studies the discord of a bipartite two-level system coupling to an XY spin-chain environment in a transverse field and investigates the relationship between the discord property and the environment's quantum phase transition. The results Show that the quantum discord is also able to characterize the quantum phase transitions. We also discuss the difference between discord and entanglement, and show that quantum discord may reveal more general information than quantum entanglement for characterizing the environment's quantum phase transition.
基金financial supports from the National Key R&D Program of China (Grant No.2021YFA1402104)the National Natural Science Foundation of China (Grant Nos.12074410,12047502,12147160,11934015,11975183,and 11947301)+3 种基金Major Basic Research Program of Natural Science of Shaanxi Province,China (Grant Nos.2021JCW-19 and 2017ZDJC-32)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB33000000)Double First-Class University Construction Project of Northwest Universitythe fellowship of China Postdoctoral Science Foundation (Grant Nos.2020M680724 and 2022M712580)。
文摘We study the physical properties of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields. By using a combination of numerical analysis and analytical method, we obtain the surface energy and elementary excitations of the model. It shows that the contributions of the two boundary fields to the surface energy are additive. We also find that there exists a kind of excitations related to the boundary string.