With the increasing popularity of fingerprint identification technology, its security and privacy have been paid much attention. Only the security and privacy of biological information are insured, the biological tech...With the increasing popularity of fingerprint identification technology, its security and privacy have been paid much attention. Only the security and privacy of biological information are insured, the biological technology can be better accepted and used by the public. In this paper, we propose a novel quantum bit(qbit)-based scheme to solve the security and privacy problem existing in the traditional fingerprint identification system. By exploiting the properties of quantum mechanics, our proposed scheme, cancelable remote quantum fingerprint templates protection scheme, can achieve the unconditional security guaranteed in an information-theoretical sense. Moreover, this novel quantum scheme can invalidate most of the attacks aimed at the fingerprint identification system. In addition, the proposed scheme is applicable to the requirement of remote communication with no need to worry about its security and privacy during the transmission. This is an absolute advantage when comparing with other traditional methods. Security analysis shows that the proposed scheme can effectively ensure the communication security and the privacy of users' information for the fingerprint identification.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61379153 and 61572529)
文摘With the increasing popularity of fingerprint identification technology, its security and privacy have been paid much attention. Only the security and privacy of biological information are insured, the biological technology can be better accepted and used by the public. In this paper, we propose a novel quantum bit(qbit)-based scheme to solve the security and privacy problem existing in the traditional fingerprint identification system. By exploiting the properties of quantum mechanics, our proposed scheme, cancelable remote quantum fingerprint templates protection scheme, can achieve the unconditional security guaranteed in an information-theoretical sense. Moreover, this novel quantum scheme can invalidate most of the attacks aimed at the fingerprint identification system. In addition, the proposed scheme is applicable to the requirement of remote communication with no need to worry about its security and privacy during the transmission. This is an absolute advantage when comparing with other traditional methods. Security analysis shows that the proposed scheme can effectively ensure the communication security and the privacy of users' information for the fingerprint identification.