Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks ...Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.展开更多
This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication...This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication and cannot simply be attributed to security issues,therefore the basic and importance of trust management in quantum communication networks should be taken more seriously.Compared with other theories and techniques in quantum communication,the trust of quantum communication and trust management model in quantum communication network environment is still in its initial stage.In this paper,the core technologies of establishing secure and reliable quantum communication networks are categorized and summarized,and the trends of each direction in trust management of quantum communication network are discussed in depth.展开更多
The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a syste...The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum tele- portation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entan- glement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay.展开更多
With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes ...With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.展开更多
To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communic...To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.展开更多
A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory...A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations(corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed.An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank.展开更多
We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cav- ities with an input tripartite entangled state at fundamental frequency. The entanglement properties of ...We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cav- ities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the trans- naission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network.展开更多
Two schemes are proposed to realize the controlled remote preparation of an arbitrary four-qubit cluster-type state via a partially entangled channel. We construct ingenious measurement bases at the sender’s and the ...Two schemes are proposed to realize the controlled remote preparation of an arbitrary four-qubit cluster-type state via a partially entangled channel. We construct ingenious measurement bases at the sender’s and the controller’s locations, which play a decisive role in the proposed schemes. The success probabilities can reach 50% and 100%, respectively. Compared with the previous proposals, the success probabilities are independent of the coefficients of the entangled channel.展开更多
Novel schemes are put forward to execute the joint remote preparation of an arbitrary two-qubit state with a pas- sive receiver via EPR pairs as the entangled channel. Compared with the previous protocols, the require...Novel schemes are put forward to execute the joint remote preparation of an arbitrary two-qubit state with a pas- sive receiver via EPR pairs as the entangled channel. Compared with the previous protocols, the required multi-particle measurement is simplified and the classical communication cost is reduced. When the number of senders increases, the advantage is more evident. It means that the proposed schemes are more efficient in practice.展开更多
In this paper, we propose certain different design ideas on a novel topic in quantum cryptography — quantum operation sharing(QOS). Following these unique ideas, three QOS schemes, the "HIEC"(The scheme who...In this paper, we propose certain different design ideas on a novel topic in quantum cryptography — quantum operation sharing(QOS). Following these unique ideas, three QOS schemes, the "HIEC"(The scheme whose messages are hidden in the entanglement correlation), "HIAO"(The scheme whose messages are hidden with the assistant operations) and "HIMB"(The scheme whose messages are hidden in the selected measurement basis), have been presented to share the single-qubit operations determinately on target states in a remote node. These schemes only require Bell states as quantum resources. Therefore, they can be directly applied in quantum networks, since Bell states are considered the basic quantum channels in quantum networks. Furthermore, after analyse on the security and resource consumptions, the task of QOS can be achieved securely and effectively in these schemes.展开更多
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063) and the National High Technology Research and Development Program of China (Grant No. 2013AA013601).
文摘Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.
基金This work is supported by the National Natural Science Foundation of China(No.61572086)the Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)+1 种基金the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643)the Application Foundation Project of Sichuan Province(No.2017JY0168).
文摘This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication and cannot simply be attributed to security issues,therefore the basic and importance of trust management in quantum communication networks should be taken more seriously.Compared with other theories and techniques in quantum communication,the trust of quantum communication and trust management model in quantum communication network environment is still in its initial stage.In this paper,the core technologies of establishing secure and reliable quantum communication networks are categorized and summarized,and the trends of each direction in trust management of quantum communication network are discussed in depth.
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063)the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60902010)
文摘The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum tele- portation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entan- glement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay.
基金Prospective Research Project on Future Networks of Jiangsu Province,China(No.BY2013095-1-18)
文摘With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.
基金supported by the National Natural Science Foundation of China(Grant Nos.61072067 and 61372076)the 111 Project(Grant No.B08038)+1 种基金the Fund from the State Key Laboratory of Integrated Services Networks(Grant No.ISN 1001004)the Fundamental Research Funds for the Central Universities(Grant Nos.K5051301059 and K5051201021)
文摘To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.
基金supported by the National Natural Science Foundation of China(Grant Nos.61272495,61379153,and 61401519)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130162110012)
文摘A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations(corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed.An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank.
基金Project supported by the National Natural Science Foundation of China(Grant No.91430109)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111401110004)the Natural Science Foundation of Shanxi Province,China(Grant No.2014011005-3)
文摘We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cav- ities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the trans- naission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network.
基金supported by the National Natural Science Foundation of China(Grant Nos.61201253,61373131,61572246,and 61502147)PAPDCICAEET funds
文摘Two schemes are proposed to realize the controlled remote preparation of an arbitrary four-qubit cluster-type state via a partially entangled channel. We construct ingenious measurement bases at the sender’s and the controller’s locations, which play a decisive role in the proposed schemes. The success probabilities can reach 50% and 100%, respectively. Compared with the previous proposals, the success probabilities are independent of the coefficients of the entangled channel.
基金supported by the National Natural Science Foundation of China(Grant Nos.61201253,61303039,61572246,and 61502147)the Fundamental Research Fund for the Central Universities of China(Grant No.2682014CX095)
文摘Novel schemes are put forward to execute the joint remote preparation of an arbitrary two-qubit state with a pas- sive receiver via EPR pairs as the entangled channel. Compared with the previous protocols, the required multi-particle measurement is simplified and the classical communication cost is reduced. When the number of senders increases, the advantage is more evident. It means that the proposed schemes are more efficient in practice.
基金supported by the National Natural Science Foundation of China(Grant Nos.61272057,61572081 and 61502200)Beijing Higher Education Young Elite Teacher Project(Grant Nos.YETP0475and YETP0477)+2 种基金the Natural Science Foundation of Guangdong Province(Grant No.2014A030310245)the Fundamental Research Funds for the Central Universities(Grant No.21615313)the Youth Foundation of Heilongjiang University from January,2016
文摘In this paper, we propose certain different design ideas on a novel topic in quantum cryptography — quantum operation sharing(QOS). Following these unique ideas, three QOS schemes, the "HIEC"(The scheme whose messages are hidden in the entanglement correlation), "HIAO"(The scheme whose messages are hidden with the assistant operations) and "HIMB"(The scheme whose messages are hidden in the selected measurement basis), have been presented to share the single-qubit operations determinately on target states in a remote node. These schemes only require Bell states as quantum resources. Therefore, they can be directly applied in quantum networks, since Bell states are considered the basic quantum channels in quantum networks. Furthermore, after analyse on the security and resource consumptions, the task of QOS can be achieved securely and effectively in these schemes.