To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, a...To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.展开更多
The security of the quantum secure deterministic communication scheme [Chin. Phys.16 (2007) 2549] is reexamined. A security loophole is pointed out. Taking advantage of this loophole, an eavesdropper can steal all t...The security of the quantum secure deterministic communication scheme [Chin. Phys.16 (2007) 2549] is reexamined. A security loophole is pointed out. Taking advantage of this loophole, an eavesdropper can steal all the secret messages without being detected by an intercept-and-resend attack strategy. Furthermore, a possible improvement on this protocol is presented. It makes the modified protocol secure against this kind of attack.展开更多
his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issu...his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issue comprises four papers on recent advances in physical layer security forwireless networks. The second Part comprises another four papers on quantum com- munications.展开更多
This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and de...This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.展开更多
We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced wi...We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.展开更多
In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the server...In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the servers on the network, which will reduce the difficulty for the legitimate users to check eavesdropping largely. The users code the information on the single photons with two unitary operations which do not change their measuring bases. Some decoy photons, which are produced by operating the sample photons with a Hadamard, are used for preventing a potentially dishonest server from eavesdropping the quantum lines freely. This scheme is an economical one as it is the easiest way for QSDC network communication securely.展开更多
We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypti...We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypting protocols,our two protocols are based on channel-encryption.In both schemes,two authorized users first share a sequence of EPR pairs as their reusable quantum key.Then they use their quantum key to encrypt and decrypt the secret message carried by the decoherence-free states over the collective-noise channel.In theory,the intrinsic efficiencies of both protocols are high since there is no need to consume any entangled states including both the quantum key and the information carriers except the ones used for eavesdropping checks.For checking eavesdropping,the two parties only need to perform two-particle measurements on the decoy states during each round.Finally,we make a security analysis of our two protocols and demonstrate that they are secure.展开更多
A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit tw...A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.展开更多
In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-...In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-Podolsky-Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the‘ping-pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.展开更多
We propose two schemes for realizing quantum secure direct communication (QSDC)by using a set ofordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs)as quantuminformatio...We propose two schemes for realizing quantum secure direct communication (QSDC)by using a set ofordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs)as quantuminformation channels.In the first scheme,the photons from Bob to Alice are transmitted only once.After insuring thesecurity of the quantum channels,Bob encodes the secret message on his photons.Then Alice performs single-photontwo-DOF Bell bases measurements on her photons.This scheme has better security than former QSDC protocols.In thesecond scheme,Bob transmits photons to Alice twice.After insuring the security of the quantum channels,Bob encodesthe secret message on his photons.Then Alice performs two-photon Bell bases measurements on each DOF.The schemehas more information capacity than former QSDC protocols.展开更多
We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be...We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal.The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently.Compared with other QSDC network protocols,our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information.Also,we discuss the security of our QSDC network protocol and its feasibility with current techniques.展开更多
We present a quantum secure communication scheme using three-qubit W state. It is unnecessary for the present scheme to use alternative measurement or Bell basis measurement. Compared with the quantum secure direct co...We present a quantum secure communication scheme using three-qubit W state. It is unnecessary for the present scheme to use alternative measurement or Bell basis measurement. Compared with the quantum secure direct communication scheme proposed by Cao et at. [H.J. Cao and H.S. Song, Chin. Phys. Lett. 23 (2006) 290], in our scheme, the detection probability for an eavesdropper's attack increases from 8.3% to 25%. We also show that our scheme is secure for a noise quantum channel.展开更多
An improvement (Y-protocol) [Commun. Theor. Phys. 49 (2008) 103] on the quantum secure direct communication with W state (C-protocol) [Chin. Phys. Lett. 23 (2006) 290] is proposed by Yuan et al. The quantum bi...An improvement (Y-protocol) [Commun. Theor. Phys. 49 (2008) 103] on the quantum secure direct communication with W state (C-protocol) [Chin. Phys. Lett. 23 (2006) 290] is proposed by Yuan et al. The quantum bit error rate induced by eavesdropper is 4.17% in C-protocol and 6.25% in Y-protocoL In this paper, another improvement on C-protocol is given. The quantum bit error rate of the eavesdropping will increase to 8.75%, which is 1.1 times larger than that in C-protocol and 0.4 times larger than that in Y-protocol.展开更多
In order to transmit the secure messages,a deterministic secure quantum direct communication protocol,called the "Ping-pong"protocol was proposed by Bostrm and Felbinger [Phys.Rev.Lett.89,187902(2002) ].But ...In order to transmit the secure messages,a deterministic secure quantum direct communication protocol,called the "Ping-pong"protocol was proposed by Bostrm and Felbinger [Phys.Rev.Lett.89,187902(2002) ].But the protocol was proved to have many vulnerabilities,and can be attacked by eavesdroppers.To overcome the problem,an improved security detection strategy which inserts the | 0〉,| 1〉,|+〉and |-〉particles into the messages as the decoy particles randomly in the"Ping-pong"protocol is presented.During the security analysis,the method of the entropy theory is introduced,and three detection strategies are compared quantitatively by using the constraint between the information which eavesdroppers can obtain and the interference introduced.Because of the presence of the trap particles |+〉and |-〉,the detection rate will be no less than 25% when Eve attacks the communication.The security analysis result shows that the efficiency of eavesdropping detection in the presented protocol is higher than the other two,so the detection strategy in the protocol can ensure that the "Ping-pong"protocol is more secure.展开更多
I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state m...I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state measurements, it is shown that the three legitimate parties can exchange their respective secret message simultaneously. Then I modify it for an experimentally feasible and secure quantum sealed-bid auction (QSBD) protocol. Furthermore, I also analyze th^ecurity of the protocol, and the scheme is proven to be secure against the intercept-and-resend attack, the disturbancb attack and the entangled-and-measure attack.展开更多
Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channe...Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channel noise. The eavesdropping scheme is presented, which reveals that the C-S QSDC protocol is not secure if the quantum bit error rate (QBER) caused by quantum channel noise is higher than 4.17%. Our eavesdropping scheme induces about 4.17% QBER for those check qubits. However, such QBER can be hidden in the counterpart induced by the noisy quantum channel if the eavesdropper Eve replaces the original noisy channel by an ideal one. Furthermore, if the QBER induced by quantum channel noise is lower than 4.17%, then in the eavesdropping scheme Eve still can eavesdrop part of the secret messages by safely attacking a fraction of the transmitted qubits. Finally, an improvement on the C-S QSDC protocol is put forward.展开更多
We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used a...We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks canbe ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-daytechnique.展开更多
The one-step quantum secure direct communication(QSDC)(Sci.Bull.67,367(2022))can effectively simplify QSDC’s operation and reduce message loss.For enhancing its security under practical experimental condition,we prop...The one-step quantum secure direct communication(QSDC)(Sci.Bull.67,367(2022))can effectively simplify QSDC’s operation and reduce message loss.For enhancing its security under practical experimental condition,we propose two measurement-device-independent(MDI)one-step QSDC protocols,which can resist all possible attacks from imperfect measurement devices.In both protocols,the communication parties prepare identical polarization-spatial-mode two-photon hyperentangled states and construct the hyperentanglement channel by hyperentanglement swapping.The first MDI one-step QSDC protocol adopts the nonlinear-optical complete hyperentanglement Bell state measurement(HBSM)to construct the hyperentanglement channel,while the second protocol adopts the linear-optical partial HBSM.Then,the parties encode the photons in the polarization degree of freedom and send them to the third party for the hyperentanglementassisted complete polarization Bell state measurement.Both protocols are unconditionally secure in theory.The simulation results show the MDI one-step QSDC protocol with complete HBSM attains the maximal communication distance of about354 km.Our MDI one-step QSDC protocols may have potential applications in the future quantum secure communication field.展开更多
The controlled quantum secure direct communication(CQSDC)with authentication protocol based on four particle cluster states via quantum one-time pad and local unitary operations is cryptanalyzed.It is found that there...The controlled quantum secure direct communication(CQSDC)with authentication protocol based on four particle cluster states via quantum one-time pad and local unitary operations is cryptanalyzed.It is found that there are some serious security issues in this protocol.An eavesdropper(Eve)can eavesdrop on some information of the identity strings of the receiver and the controller without being detected by the selective-CNOT-operation(SCNO)attack.By the same attack,Eve can also steal some information of the secret message that the sender transmits.In addition,the receiver can take the same kind of attack to eavesdrop on some information of the secret message out of the control of the controller.This means that the requirements of CQSDC are not satisfied.At last,we improve the original CQSDC protocol to a secure one.展开更多
An improved quantum secure direct communication (QSDC) protocol is proposed in this paper. Blocks of entangled photon pairs are transmitted in two steps in which secret messages are transmitted directly. The single ...An improved quantum secure direct communication (QSDC) protocol is proposed in this paper. Blocks of entangled photon pairs are transmitted in two steps in which secret messages are transmitted directly. The single logical qubits and unitary operations under decoherence free subspaces are presented and the generalized Bell states are constructed which are immune to the collective noise. Two steps of qubit transmission are used in this protocol to guarantee the security of communication. The security of the protocol against various attacks are discussed.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61472048,61402058,61272511,61472046,61202082 and 61370194the Beijing Natural Science Foundation under Grant No 4152038the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561826
文摘To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60873191 and 60821001)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800131016)+3 种基金the Foundation for Key Program of Ministry of Education of China (Grant No. 109014)the Beijing Nova Program, China (Grant No. 2008B51)the China Post-Doctoral Science Foundation (Grant No. 20090450018)the Natural Science Foundation of Beijing, China (Grant No. 4072020)
文摘The security of the quantum secure deterministic communication scheme [Chin. Phys.16 (2007) 2549] is reexamined. A security loophole is pointed out. Taking advantage of this loophole, an eavesdropper can steal all the secret messages without being detected by an intercept-and-resend attack strategy. Furthermore, a possible improvement on this protocol is presented. It makes the modified protocol secure against this kind of attack.
文摘his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issue comprises four papers on recent advances in physical layer security forwireless networks. The second Part comprises another four papers on quantum com- munications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.
基金supported by the Natural Science Foundation of Jiangsu Provincial Universities, China (Grant No. 10KJB180004)
文摘We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the servers on the network, which will reduce the difficulty for the legitimate users to check eavesdropping largely. The users code the information on the single photons with two unitary operations which do not change their measuring bases. Some decoy photons, which are produced by operating the sample photons with a Hadamard, are used for preventing a potentially dishonest server from eavesdropping the quantum lines freely. This scheme is an economical one as it is the easiest way for QSDC network communication securely.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61170270,61100203,60903152,61003286,and61121061)the Program for New Century Excellent Talents in University (Grant No. NCET-10-0260)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090005110010)the Natural Science Foundation of Beijing (Grant Nos. 4112040 and 4122054)the Foundation of Science and Technology on Communication Security Laboratory (Grant No. 9140C110101110 C1104)the Fundamental Research Funds for the Central Universities (Grant Nos. BUPT2011YB01,BUPT2011RC0505,2011PTB-00-29,and 2011RCZJ15)
文摘We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypting protocols,our two protocols are based on channel-encryption.In both schemes,two authorized users first share a sequence of EPR pairs as their reusable quantum key.Then they use their quantum key to encrypt and decrypt the secret message carried by the decoherence-free states over the collective-noise channel.In theory,the intrinsic efficiencies of both protocols are high since there is no need to consume any entangled states including both the quantum key and the information carriers except the ones used for eavesdropping checks.For checking eavesdropping,the two parties only need to perform two-particle measurements on the decoy states during each round.Finally,we make a security analysis of our two protocols and demonstrate that they are secure.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572071 and 60873101)Natural Science Foundation of Jiangsu Province (Grant Nos BM2006504, BK2007104 and BK2008209)College Natural Science Foundation of Jiangsu Province (Grant No 06KJB520137)
文摘A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2006AA01Z419), the Major Research plan of the National Natural Science Foundation of China (Grant No 90604023), National Laboratory for Moderm Communications Science Foundation of China (Grant No 9140C1101010601) and the 0pen Foundation of State Key Laboratory of Information Security (Graduate School of Chinese Academy of Sciences).
文摘In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-Podolsky-Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the‘ping-pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.
基金Supported by the National Natural Science Foundations of China under Grant Nos. 10904066 and 11004096the State Key Program for Basic Research of China under Grant No. 2011CBA00205
文摘We propose two schemes for realizing quantum secure direct communication (QSDC)by using a set ofordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs)as quantuminformation channels.In the first scheme,the photons from Bob to Alice are transmitted only once.After insuring thesecurity of the quantum channels,Bob encodes the secret message on his photons.Then Alice performs single-photontwo-DOF Bell bases measurements on her photons.This scheme has better security than former QSDC protocols.In thesecond scheme,Bob transmits photons to Alice twice.After insuring the security of the quantum channels,Bob encodesthe secret message on his photons.Then Alice performs two-photon Bell bases measurements on each DOF.The schemehas more information capacity than former QSDC protocols.
基金Supported by the Natural Science Foundation of Jiangsu Provincial Universities under Grant No.10KJB180004the National Natural Science Foundation of China under Grant No.11105075
文摘We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal.The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently.Compared with other QSDC network protocols,our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information.Also,we discuss the security of our QSDC network protocol and its feasibility with current techniques.
基金The project supported by National Natural Science Foundation of China under Grant No. 60472032
文摘We present a quantum secure communication scheme using three-qubit W state. It is unnecessary for the present scheme to use alternative measurement or Bell basis measurement. Compared with the quantum secure direct communication scheme proposed by Cao et at. [H.J. Cao and H.S. Song, Chin. Phys. Lett. 23 (2006) 290], in our scheme, the detection probability for an eavesdropper's attack increases from 8.3% to 25%. We also show that our scheme is secure for a noise quantum channel.
基金supported by National Natural Science Foundation of China under Grant No.10704011the Research Programs of the Educational Office of Liaoning Province of China under Grant No.2008006
文摘An improvement (Y-protocol) [Commun. Theor. Phys. 49 (2008) 103] on the quantum secure direct communication with W state (C-protocol) [Chin. Phys. Lett. 23 (2006) 290] is proposed by Yuan et al. The quantum bit error rate induced by eavesdropper is 4.17% in C-protocol and 6.25% in Y-protocoL In this paper, another improvement on C-protocol is given. The quantum bit error rate of the eavesdropping will increase to 8.75%, which is 1.1 times larger than that in C-protocol and 0.4 times larger than that in Y-protocol.
基金supported by Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20060013007National Natural Science Foundation of Beijing under Grant No.4092029National Natural Science Foundation of China under Grant No.60873001
文摘In order to transmit the secure messages,a deterministic secure quantum direct communication protocol,called the "Ping-pong"protocol was proposed by Bostrm and Felbinger [Phys.Rev.Lett.89,187902(2002) ].But the protocol was proved to have many vulnerabilities,and can be attacked by eavesdroppers.To overcome the problem,an improved security detection strategy which inserts the | 0〉,| 1〉,|+〉and |-〉particles into the messages as the decoy particles randomly in the"Ping-pong"protocol is presented.During the security analysis,the method of the entropy theory is introduced,and three detection strategies are compared quantitatively by using the constraint between the information which eavesdroppers can obtain and the interference introduced.Because of the presence of the trap particles |+〉and |-〉,the detection rate will be no less than 25% when Eve attacks the communication.The security analysis result shows that the efficiency of eavesdropping detection in the presented protocol is higher than the other two,so the detection strategy in the protocol can ensure that the "Ping-pong"protocol is more secure.
基金Supported by the 211 Project of Anhui University under Grant No.2009QN028B
文摘I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state measurements, it is shown that the three legitimate parties can exchange their respective secret message simultaneously. Then I modify it for an experimentally feasible and secure quantum sealed-bid auction (QSBD) protocol. Furthermore, I also analyze th^ecurity of the protocol, and the scheme is proven to be secure against the intercept-and-resend attack, the disturbancb attack and the entangled-and-measure attack.
基金The project supported by the Program for New Century Excellent Talents at the University of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant No.60677001+3 种基金the Science Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806Natural Science Foundation of Hubei Province under Grant No.2006ABA354
文摘Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channel noise. The eavesdropping scheme is presented, which reveals that the C-S QSDC protocol is not secure if the quantum bit error rate (QBER) caused by quantum channel noise is higher than 4.17%. Our eavesdropping scheme induces about 4.17% QBER for those check qubits. However, such QBER can be hidden in the counterpart induced by the noisy quantum channel if the eavesdropper Eve replaces the original noisy channel by an ideal one. Furthermore, if the QBER induced by quantum channel noise is lower than 4.17%, then in the eavesdropping scheme Eve still can eavesdrop part of the secret messages by safely attacking a fraction of the transmitted qubits. Finally, an improvement on the C-S QSDC protocol is put forward.
文摘We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks canbe ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-daytechnique.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974189 and 12175106)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.20KJB140001)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grand No.KYCX22-0963)
文摘The one-step quantum secure direct communication(QSDC)(Sci.Bull.67,367(2022))can effectively simplify QSDC’s operation and reduce message loss.For enhancing its security under practical experimental condition,we propose two measurement-device-independent(MDI)one-step QSDC protocols,which can resist all possible attacks from imperfect measurement devices.In both protocols,the communication parties prepare identical polarization-spatial-mode two-photon hyperentangled states and construct the hyperentanglement channel by hyperentanglement swapping.The first MDI one-step QSDC protocol adopts the nonlinear-optical complete hyperentanglement Bell state measurement(HBSM)to construct the hyperentanglement channel,while the second protocol adopts the linear-optical partial HBSM.Then,the parties encode the photons in the polarization degree of freedom and send them to the third party for the hyperentanglementassisted complete polarization Bell state measurement.Both protocols are unconditionally secure in theory.The simulation results show the MDI one-step QSDC protocol with complete HBSM attains the maximal communication distance of about354 km.Our MDI one-step QSDC protocols may have potential applications in the future quantum secure communication field.
基金This work was supported by National Natural Science Foundation of China(Grant No.61502101)the Six Talent Peaks Project of Jiangsu Province(Grant No.XYDXX-003)+1 种基金Scientific Research Foundation of the science and Technology Department of Fujian Province(Grant No.JK2015023)Shangda Li Education Foundation of Jimei University(Grant No.ZC2013010).
文摘The controlled quantum secure direct communication(CQSDC)with authentication protocol based on four particle cluster states via quantum one-time pad and local unitary operations is cryptanalyzed.It is found that there are some serious security issues in this protocol.An eavesdropper(Eve)can eavesdrop on some information of the identity strings of the receiver and the controller without being detected by the selective-CNOT-operation(SCNO)attack.By the same attack,Eve can also steal some information of the secret message that the sender transmits.In addition,the receiver can take the same kind of attack to eavesdrop on some information of the secret message out of the control of the controller.This means that the requirements of CQSDC are not satisfied.At last,we improve the original CQSDC protocol to a secure one.
基金Project supported by the National Fundamental Research Program (Grant No. 2010CB923202)the Fundamental Research Funds for the Central Universities (Grant No. BUPT2009RC0710)the National Natural Science Foundation of China (Grant Nos. 60937003 and 10947151)
文摘An improved quantum secure direct communication (QSDC) protocol is proposed in this paper. Blocks of entangled photon pairs are transmitted in two steps in which secret messages are transmitted directly. The single logical qubits and unitary operations under decoherence free subspaces are presented and the generalized Bell states are constructed which are immune to the collective noise. Two steps of qubit transmission are used in this protocol to guarantee the security of communication. The security of the protocol against various attacks are discussed.