This paper introduces the two Upsilon constants to the reader. Their usefulness is described with respect to acting as coupling constants between the CMB temperature and the Hubble constant. In addition, this paper su...This paper introduces the two Upsilon constants to the reader. Their usefulness is described with respect to acting as coupling constants between the CMB temperature and the Hubble constant. In addition, this paper summarizes the current state of quantum cosmology with respect to the Flat Space Cosmology (FSC) model. Although the FSC quantum cosmology formulae were published in 2018, they are only rearrangements and substitutions of the other assumptions into the original FSC Hubble temperature formula. In a real sense, this temperature formula was the first quantum cosmology formula developed since Hawking’s black hole temperature formula. A recent development in the last month proves that the FSC Hubble temperature formula can be derived from the Stephan-Boltzmann law. Thus, this Hubble temperature formula effectively unites some quantum developments with the general relativity model inherent in FSC. More progress towards unification in the near-future is expected.展开更多
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a...Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.展开更多
This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem....This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem. Such a solution does not appear to be achievable in cosmological models which do not integrate black hole formulae with quantum formulae such as the Stephan-Boltzmann law. As demonstrated herein, assuming a constant value of Lambda over the great span of cosmic time appears to have been a mistake. It appears that Einstein’s assumption of a constant, in terms of vacuum energy density, was not only a mistake for a statically-balanced universe, but also a mistake for a dynamically-expanding universe.展开更多
In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Th...In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.展开更多
This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139...This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139. The FSC Model introduces a new perspective on the fundamental nature of our universe, showing that α = 137.036 can be calculated from these prime property sets. The Fine Structure Constant, a cornerstone in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD), implies an underlying structure. This study identifies this mathematical framework and demonstrates how the FSC model theory aligns with our current understanding of physics and cosmology. The results unveil a hierarchy of α values for twin prime pairs U{3/2} through U{199/197}. These values, represented by their fraction parts α♊ (e.g., 0.036), define the relative electromagnetic forces driving quantum energy systems. The lower twin prime pairs, such as U{3/2}, exhibit higher EM forces that decrease as the twin pairs increase, turning dark when they drop below the α♊ for light. The results provide classical definitions for Baryonic Matter/Energy, Dark Matter, Dark Energy, and Antimatter but mostly illustrate how the combined α♊ values for three adjacent twin primes, U{7/5/3/2} mirrors the strong nuclear force of gluons holding quarks together.展开更多
The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowsk...The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowski space time is based upon the point set with σ-length on light cone.展开更多
<span style="line-height:1.5;">For purposes of quantization, classical gravity is normally expressed by canonical variables, namely the metric </span><img src="Edit_7bad0ce2-ecaa-4318-b3c...<span style="line-height:1.5;">For purposes of quantization, classical gravity is normally expressed by canonical variables, namely the metric </span><img src="Edit_7bad0ce2-ecaa-4318-b3c9-5bbcfa7c087e.png" alt="" style="line-height:1.5;" /><span style="line-height:1.5;"></span><span "="" style="line-height:1.5;"><span> and the momentum </span><img src="Edit_c86b710a-9b65-4220-a4e2-cff8eeab9642.png" alt="" /></span><span style="line-height:1.5;"></span><span style="line-height:1.5;">. Canonical quantization requires a proper promotion of these classical variables to quantum operators, which, according to Dirac, the favored operators should be those arising from classical variables that formed Cartesian coordinates;sadly, in this case, that is not possible. However, an affine quantization feature</span><span style="line-height:1.5;">s</span><span "="" style="line-height:1.5;"><span> promoting the metric </span><img src="Edit_d0035f64-c366-4510-9cc7-d1053f755369.png" alt="" /></span><span "="" style="line-height:1.5;"><span> and the momentric </span><img src="Edit_60c18bb8-525b-4896-ae8f-2cd6456eb6f7.png" alt="" /></span><span "="" style="line-height:1.5;"><span> to operators. Instead of these classical variables belonging to a constant zero curvature space (</span><i><span>i.e.</span></i><span>, instead of a flat space), they belong to a space of constant negative curvatures. This feature may even have its appearance in black holes, which could strongly point toward an affine quantization approach to quantize gravity.展开更多
The cosmological constant problem is reanalyzed by imposing the limitation of the number of degrees of freedom (d.o.f.) due to entropy bounds directly in the calculation of the energy density of a field theory. It is ...The cosmological constant problem is reanalyzed by imposing the limitation of the number of degrees of freedom (d.o.f.) due to entropy bounds directly in the calculation of the energy density of a field theory. It is shown that if a quantum field theory has to be consistent with gravity and holography, i.e. with an upper limit of storing information in a given area, the ultraviolet momentum cut-off is not the Planck mass, Mp, as naively expected, but where Nu is the number of d.o.f. of the universe. The energy density evaluation turns out completely consistent with Bousso’s bound on the cosmological constant value. The scale , that in the “fat graviton” theory corresponds to the graviton size, originates by a self-similar rearrangement of the elementary d.o.f. at different scales that can be seen as an infrared-ultraviolet connection.展开更多
Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop q...Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.展开更多
In this paper, we propose an entanglement scheme for long-distance, constant-fidelity communication in quantum networks. We discuss the optimal rate of entanglement that allows for constant fidelity in both elementary...In this paper, we propose an entanglement scheme for long-distance, constant-fidelity communication in quantum networks. We discuss the optimal rate of entanglement that allows for constant fidelity in both elementary and muhihop links. We also discuss time complexity and propose the mathematical order of the rate capacity for an entanglement scheme. We propose a recursive entanglement scheme, a simultaneous entanglement scheme, and an adjacent entanglement scheme mathematically analyze these schemes. The rate capacity of the recursive and simultaneous entanglement schemes is Ω(1/e^n), but the adjacent entanglement scheme performs better, providing a rate of lΩ(1/n).展开更多
We consider if a generalized HUP set greater than or equal to Planck’s constant divided by the square of a scale factor, as well as an inflaton field, yields the result that Delta E times Delta t is embedded in a 5 d...We consider if a generalized HUP set greater than or equal to Planck’s constant divided by the square of a scale factor, as well as an inflaton field, yields the result that Delta E times Delta t is embedded in a 5 dimensional field which is within a deterministic structure. Our proof concludes with Delta t as of Planck time, resulting in enormous potential energy. If that potential energy is induced by a repeating universe structure, we get a free value of Delta E that is almost infinite, supporting a prior conclusion.展开更多
Siva’s constant “K” has been explained in brief. Its numerical values have been calculated for each fundamental force of nature. Spin of quantum mechanics has been interpreted in terms of Sivas constant “K”. Thus...Siva’s constant “K” has been explained in brief. Its numerical values have been calculated for each fundamental force of nature. Spin of quantum mechanics has been interpreted in terms of Sivas constant “K”. Thus limitation to velocity of light and interrelation between relativity and quantum mechanics has been explained in a novel and profound way. Involvement of “physics of consciousness” in synchronizing relativity and quantum mechanics has been emphasized. Concept of “bio force” as fifth fundamental force in addition to other four fundamental forces, strong, weak, electromagnetic and gravitational forces also has been emphasized. Consciousness has been explained as entanglement between bio force particle named as “jeeton” and gravitational force particle “graviton”. Thus frequency mediated consciousness has been explained.展开更多
In classical quantum theory, the Rydberg constant is a fundamental physical constant that plays an important role. It comes into play as an indispensable physical constant in basic formulas for describing natural phen...In classical quantum theory, the Rydberg constant is a fundamental physical constant that plays an important role. It comes into play as an indispensable physical constant in basic formulas for describing natural phenomena. However, relativity is not taken into account in this Rydberg formula for wavelength. If the special theory of relativity is taken into account, R<sub>∞</sub> can no longer be regarded as a physical constant. That is, we have continued to conduct experiments to this day in an attempt to determine the value of a physical constant, the Rydberg constant, which does not exist in the natural world.展开更多
The Fine Structure Constant (α) is a dimensionless value that guides much of quantum physics but with no scientific insight into why this specific number. The number defines the coupling constant for the strength of ...The Fine Structure Constant (α) is a dimensionless value that guides much of quantum physics but with no scientific insight into why this specific number. The number defines the coupling constant for the strength of the electromagnetic force and is precisely tuned to make our universe functional. This study introduces a novel approach to understanding a conceptual model for how this critical number is part of a larger design rather than a random accident of nature. The Fine Structure Constant (FSC) model employs a Python program to calculate n-dimensional property sets for prime number universes where α equals the whole number values 137 and 139, representing twin prime universes without a fractional constant. Each property is defined by theoretical prime number sets that represent focal points of matter and wave energy in their respective universes. This work aims to determine if these prime number sets can reproduce the observed α value, giving it a definable structure. The result of the FSC model produces a α value equal to 137.036, an almost exact match. Furthermore, the model indicates that other twin prime pairs also have a role in our functional universe, providing a hierarchy for atomic orbital energy levels and alignment with the principal and azimuthal quantum numbers. In addition, it construes stable matter as property sets with the highest ratio of twin prime elements. These results provide a new perspective on a mathematical structure that shapes our universe and, if valid, has the structural complexity to guide future research.展开更多
This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the...This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the Tatum and Seshavatharam Hubble temperature formulae can be derived using the Stephan-Boltzmann dispersion law. Thus, as explained herein, the era of high precision Planck scale quantum cosmology has arrived.展开更多
This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in ot...This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in other papers. We also explore a relatively new general relativity-inspired field equation based on the original Newtonian mass, which is very different from today’s kilogram mass. Additionally, we examine two other field equations based on collision space-time, where both energy and matter can be described simply as space and time. We are thereby fulfilling Einstein’s dream of a theory where energy and mass are not needed, or are just aspects of space and time. If this is extended beyond the 4-dimensional space-time formalism of general relativity theory to a 6-dimensional framework with 3 space dimensions and 3 time dimensions, this ultimately reveals that they are two sides of the same coin. In reality, it is a three-dimensional space-time theory, where space and time are just two sides of the same coin.展开更多
We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckion...We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.展开更多
文摘This paper introduces the two Upsilon constants to the reader. Their usefulness is described with respect to acting as coupling constants between the CMB temperature and the Hubble constant. In addition, this paper summarizes the current state of quantum cosmology with respect to the Flat Space Cosmology (FSC) model. Although the FSC quantum cosmology formulae were published in 2018, they are only rearrangements and substitutions of the other assumptions into the original FSC Hubble temperature formula. In a real sense, this temperature formula was the first quantum cosmology formula developed since Hawking’s black hole temperature formula. A recent development in the last month proves that the FSC Hubble temperature formula can be derived from the Stephan-Boltzmann law. Thus, this Hubble temperature formula effectively unites some quantum developments with the general relativity model inherent in FSC. More progress towards unification in the near-future is expected.
文摘Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.
文摘This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem. Such a solution does not appear to be achievable in cosmological models which do not integrate black hole formulae with quantum formulae such as the Stephan-Boltzmann law. As demonstrated herein, assuming a constant value of Lambda over the great span of cosmic time appears to have been a mistake. It appears that Einstein’s assumption of a constant, in terms of vacuum energy density, was not only a mistake for a statically-balanced universe, but also a mistake for a dynamically-expanding universe.
文摘In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.
文摘This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139. The FSC Model introduces a new perspective on the fundamental nature of our universe, showing that α = 137.036 can be calculated from these prime property sets. The Fine Structure Constant, a cornerstone in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD), implies an underlying structure. This study identifies this mathematical framework and demonstrates how the FSC model theory aligns with our current understanding of physics and cosmology. The results unveil a hierarchy of α values for twin prime pairs U{3/2} through U{199/197}. These values, represented by their fraction parts α♊ (e.g., 0.036), define the relative electromagnetic forces driving quantum energy systems. The lower twin prime pairs, such as U{3/2}, exhibit higher EM forces that decrease as the twin pairs increase, turning dark when they drop below the α♊ for light. The results provide classical definitions for Baryonic Matter/Energy, Dark Matter, Dark Energy, and Antimatter but mostly illustrate how the combined α♊ values for three adjacent twin primes, U{7/5/3/2} mirrors the strong nuclear force of gluons holding quarks together.
文摘The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowski space time is based upon the point set with σ-length on light cone.
文摘<span style="line-height:1.5;">For purposes of quantization, classical gravity is normally expressed by canonical variables, namely the metric </span><img src="Edit_7bad0ce2-ecaa-4318-b3c9-5bbcfa7c087e.png" alt="" style="line-height:1.5;" /><span style="line-height:1.5;"></span><span "="" style="line-height:1.5;"><span> and the momentum </span><img src="Edit_c86b710a-9b65-4220-a4e2-cff8eeab9642.png" alt="" /></span><span style="line-height:1.5;"></span><span style="line-height:1.5;">. Canonical quantization requires a proper promotion of these classical variables to quantum operators, which, according to Dirac, the favored operators should be those arising from classical variables that formed Cartesian coordinates;sadly, in this case, that is not possible. However, an affine quantization feature</span><span style="line-height:1.5;">s</span><span "="" style="line-height:1.5;"><span> promoting the metric </span><img src="Edit_d0035f64-c366-4510-9cc7-d1053f755369.png" alt="" /></span><span "="" style="line-height:1.5;"><span> and the momentric </span><img src="Edit_60c18bb8-525b-4896-ae8f-2cd6456eb6f7.png" alt="" /></span><span "="" style="line-height:1.5;"><span> to operators. Instead of these classical variables belonging to a constant zero curvature space (</span><i><span>i.e.</span></i><span>, instead of a flat space), they belong to a space of constant negative curvatures. This feature may even have its appearance in black holes, which could strongly point toward an affine quantization approach to quantize gravity.
文摘The cosmological constant problem is reanalyzed by imposing the limitation of the number of degrees of freedom (d.o.f.) due to entropy bounds directly in the calculation of the energy density of a field theory. It is shown that if a quantum field theory has to be consistent with gravity and holography, i.e. with an upper limit of storing information in a given area, the ultraviolet momentum cut-off is not the Planck mass, Mp, as naively expected, but where Nu is the number of d.o.f. of the universe. The energy density evaluation turns out completely consistent with Bousso’s bound on the cosmological constant value. The scale , that in the “fat graviton” theory corresponds to the graviton size, originates by a self-similar rearrangement of the elementary d.o.f. at different scales that can be seen as an infrared-ultraviolet connection.
基金Supported by the Algerian Ministry of Education and ResearchDGRSDT
文摘Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.
文摘In this paper, we propose an entanglement scheme for long-distance, constant-fidelity communication in quantum networks. We discuss the optimal rate of entanglement that allows for constant fidelity in both elementary and muhihop links. We also discuss time complexity and propose the mathematical order of the rate capacity for an entanglement scheme. We propose a recursive entanglement scheme, a simultaneous entanglement scheme, and an adjacent entanglement scheme mathematically analyze these schemes. The rate capacity of the recursive and simultaneous entanglement schemes is Ω(1/e^n), but the adjacent entanglement scheme performs better, providing a rate of lΩ(1/n).
文摘We consider if a generalized HUP set greater than or equal to Planck’s constant divided by the square of a scale factor, as well as an inflaton field, yields the result that Delta E times Delta t is embedded in a 5 dimensional field which is within a deterministic structure. Our proof concludes with Delta t as of Planck time, resulting in enormous potential energy. If that potential energy is induced by a repeating universe structure, we get a free value of Delta E that is almost infinite, supporting a prior conclusion.
文摘Siva’s constant “K” has been explained in brief. Its numerical values have been calculated for each fundamental force of nature. Spin of quantum mechanics has been interpreted in terms of Sivas constant “K”. Thus limitation to velocity of light and interrelation between relativity and quantum mechanics has been explained in a novel and profound way. Involvement of “physics of consciousness” in synchronizing relativity and quantum mechanics has been emphasized. Concept of “bio force” as fifth fundamental force in addition to other four fundamental forces, strong, weak, electromagnetic and gravitational forces also has been emphasized. Consciousness has been explained as entanglement between bio force particle named as “jeeton” and gravitational force particle “graviton”. Thus frequency mediated consciousness has been explained.
文摘In classical quantum theory, the Rydberg constant is a fundamental physical constant that plays an important role. It comes into play as an indispensable physical constant in basic formulas for describing natural phenomena. However, relativity is not taken into account in this Rydberg formula for wavelength. If the special theory of relativity is taken into account, R<sub>∞</sub> can no longer be regarded as a physical constant. That is, we have continued to conduct experiments to this day in an attempt to determine the value of a physical constant, the Rydberg constant, which does not exist in the natural world.
文摘The Fine Structure Constant (α) is a dimensionless value that guides much of quantum physics but with no scientific insight into why this specific number. The number defines the coupling constant for the strength of the electromagnetic force and is precisely tuned to make our universe functional. This study introduces a novel approach to understanding a conceptual model for how this critical number is part of a larger design rather than a random accident of nature. The Fine Structure Constant (FSC) model employs a Python program to calculate n-dimensional property sets for prime number universes where α equals the whole number values 137 and 139, representing twin prime universes without a fractional constant. Each property is defined by theoretical prime number sets that represent focal points of matter and wave energy in their respective universes. This work aims to determine if these prime number sets can reproduce the observed α value, giving it a definable structure. The result of the FSC model produces a α value equal to 137.036, an almost exact match. Furthermore, the model indicates that other twin prime pairs also have a role in our functional universe, providing a hierarchy for atomic orbital energy levels and alignment with the principal and azimuthal quantum numbers. In addition, it construes stable matter as property sets with the highest ratio of twin prime elements. These results provide a new perspective on a mathematical structure that shapes our universe and, if valid, has the structural complexity to guide future research.
文摘This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the Tatum and Seshavatharam Hubble temperature formulae can be derived using the Stephan-Boltzmann dispersion law. Thus, as explained herein, the era of high precision Planck scale quantum cosmology has arrived.
文摘This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in other papers. We also explore a relatively new general relativity-inspired field equation based on the original Newtonian mass, which is very different from today’s kilogram mass. Additionally, we examine two other field equations based on collision space-time, where both energy and matter can be described simply as space and time. We are thereby fulfilling Einstein’s dream of a theory where energy and mass are not needed, or are just aspects of space and time. If this is extended beyond the 4-dimensional space-time formalism of general relativity theory to a 6-dimensional framework with 3 space dimensions and 3 time dimensions, this ultimately reveals that they are two sides of the same coin. In reality, it is a three-dimensional space-time theory, where space and time are just two sides of the same coin.
文摘We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.