期刊文献+
共找到296篇文章
< 1 2 15 >
每页显示 20 50 100
Efficient quantum dot sensitized solar cells via improved loading amount management
1
作者 Wei Wang Yiling Xie +3 位作者 Fangfang He Yuan Wang Weinan Xue Yan Li 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期213-223,共11页
High light-harvesting efficiency and low interfacial charge transfer loss are essential for the fabrication of high-efficiency quantum dot-based solar cells(QDSCs). Increasing the thickness of mesoporous TiO2films can... High light-harvesting efficiency and low interfacial charge transfer loss are essential for the fabrication of high-efficiency quantum dot-based solar cells(QDSCs). Increasing the thickness of mesoporous TiO2films can improve the loading of pre-synthesized QDs on the film and enhance the absorbance of photoanode, but commonly accompanied by the increase in the unfavorable charge recombination due to prolonged electron transmission paths. Herein, we systematically studied the influence of the balance between QD loading and TiO2film thickness on the performance of QDSCs. It is found that the relative thin photoanode prepared by the cationic surfactant-assisted multiple deposition procedure has achieved a high QD loading which is comparable to that of the thick photoanode commonly used. Under AM 1.5G illumination, Zn–Cu–In–Se and Zn–Cu–In–S based QDSCs with optimized 11.8 μm photoanodes show the PCE of 10.03% and 8.53%, respectively, which are comparable to the corresponding highest PCE of Zn–Cu–In–Se and Zn–Cu–In–S QDSCs(9.74% and 8.75%) with over 25.0 μm photoanodes. Similarly, an impressive PCE of 6.14% was obtained for the CdSe based QDSCs with a 4.1 μm photoanode, which is slightly lower than the best PCE(7.05%)of reference CdSe QDSCs with 18.1 μm photoanode. 展开更多
关键词 quantum dot sensitized solar cell PHOTOANODE Loading amount Surfactant-assisted deposition
下载PDF
Nano-capillary induced assemble of quantum dots on perovskite grain boundaries for efficient and stable perovskite solar cells 被引量:1
2
作者 Miaoyu Lin Jingjing He +10 位作者 Xinyi Liu Qing Li Zhanpeng Wei Yuting Sun Xuesong Leng Mengjiong Chen Zhuhui Xia Yu Peng Qiang Niu Shuang Yang Yu Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期595-601,I0014,共8页
In recent years, perovskite solar cells(PSCs) have propelled into the limelight owing to rapid development of efficiency;however, the abundant defects at the perovskite grain boundaries result in unwanted energy loss ... In recent years, perovskite solar cells(PSCs) have propelled into the limelight owing to rapid development of efficiency;however, the abundant defects at the perovskite grain boundaries result in unwanted energy loss and structural degradation. Here, the grain boundaries of perovskite polycrystalline films have been found to act as nanocapillaries for capturing perovskite quantum dots(PQDs), which enable the conformal assemble of PQDs at the top interspace between perovskite grains. The existence of PQDs passivated the surface defects, optimized the interfacial band alignments, and ultimately improved the power conversion efficiency from 19.27% to 22.47% in inverted PSCs. Our findings open up the possibility of selective assembly and structural modulation of the perovskite nanostructures towards efficient and stable PSCs. 展开更多
关键词 Perovskite solar cells quantum dots CAPILLARITY Grain boundary Passivation
下载PDF
In Situ Iodide Passivation Toward Efficient CsPbI_(3) Perovskite Quantum Dot Solar Cells 被引量:1
3
作者 Junwei Shi Ben Cohen‑Kleinstein +8 位作者 Xuliang Zhang Chenyu Zhao Yong Zhang Xufeng Ling Junjun Guo Doo‑Hyun Ko Baomin Xu Jianyu Yuan Wanli Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期28-39,共12页
All-inorganic CsPbI_3 quantum dots(QDs) have demonstrated promising potential in photovoltaic(PV) applications. However, these colloidal perovskites are vulnerable to the deterioration of surface trap states, leading ... All-inorganic CsPbI_3 quantum dots(QDs) have demonstrated promising potential in photovoltaic(PV) applications. However, these colloidal perovskites are vulnerable to the deterioration of surface trap states, leading to a degradation in efficiency and stability. To address these issues, a facile yet effective strategy of introducing hydroiodic acid(HI) into the synthesis procedure is established to achieve high-quality QDs and devices. Through an in-depth experimental analysis, the introduction of HI was found to convert PbI_2 into highly coordinated [PbI_m]~(2-m), enabling control of the nucleation numbers and growth kinetics. Combined optical and structural investigations illustrate that such a synthesis technique is beneficial for achieving enhanced crystallinity and a reduced density of crystallographic defects. Finally, the effect of HI is further reflected on the PV performance. The optimal device demonstrated a significantly improved power conversion efficiency of 15.72% along with enhanced storage stability. This technique illuminates a novel and simple methodology to regulate the formed species during synthesis, shedding light on ofurther understanding solar cell performance, and aiding the design of future novel synthesis protocols for high-performance optoelectronic devices. 展开更多
关键词 CsPbI_(3)perovskite quantum dots In situ passivation Surface trap states Perovskite solar cell
下载PDF
Review of roll-to-roll fabrication techniques for colloidal quantum dot solar cells
4
作者 Yin-Fen Ma You-Mei Wang +5 位作者 Jia Wen Ao Li Xiao-Liang Li Mei Leng Yong-Biao Zhao Zheng-Hong Lu 《Journal of Electronic Science and Technology》 CAS CSCD 2023年第1期1-25,共25页
Colloidal quantum dots(CQDs)are of great interest to photovoltaic(PV)technologies as they possess the benefits of solution-processability,size-tunability,and roll-to-roll manufacturability,as well as unique capabiliti... Colloidal quantum dots(CQDs)are of great interest to photovoltaic(PV)technologies as they possess the benefits of solution-processability,size-tunability,and roll-to-roll manufacturability,as well as unique capabilities to harvest near-infrared(NIR)radiation.During the last decade,lab-scale CQD solar cells have achieved rapid improvement in the power conversion efficiency(PCE)from~1%to 18%,which will potentially exceed 20%in the next few years and approach the performance of other PV technologies,such as perovskite solar cells and organic solar cells.In the meanwhile,CQD solar cells exhibit long lifetimes either under shelf storage or continuous operation,making them highly attractive to industry.However,in order to meet the industrial requirements,mass production techniques are necessary to scale up the fabrication of those lab devices into large-area PV modules,such as roll-to-toll coating.This paper reviews the recent developments of large-area CQD solar cells with a focus on various fabrication methods and their principles.It covers the progress of typical large-area coating techniques,including spray coating,blade coating,dip coating,and slot-die coating.It also discusses next steps and new strategies to accomplish the ultimate goal of the low-cost large-area fabrication of CQD solar cells and emphasizes how artificial intelligence or machine learning could facilitate the developments of CQD solar cell research. 展开更多
关键词 Colloidal quantum dots(CQDs) Large-area fabrication ROLL-TO-ROLL solar cells
下载PDF
Higher open-circuit voltage set by cobalt redox shuttle in SnO_2 nanofibers-sensitized CdTe quantum dot solar cells 被引量:1
5
作者 Gautam E.Unni Soorya Sasi A.Sreekumaran Nair 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期481-488,共8页
In this study, we report an efficient CdTe-SnOquantum dot(QD) solar cell fabricated by heat-assisted drop-casting of hydrothermally synthesized CdTe QDs on electrospun SnOnanofibers. The as-prepared QDs and SnOnanof... In this study, we report an efficient CdTe-SnOquantum dot(QD) solar cell fabricated by heat-assisted drop-casting of hydrothermally synthesized CdTe QDs on electrospun SnOnanofibers. The as-prepared QDs and SnOnanofibers were characterized by dynamic light scattering(DLS), UV–Vis spectroscopy,photoluminescence(PL) spectra, X-ray diffraction(XRD) and transmission electron microscopy(TEM). The SnOnanofibers deposited on fluorine-doped tin oxide(SnO) and sensitized with the CdTe QDs were assembled into a solar cell by sandwiching against a platinum(Pt) counter electrode in presence of cobalt electrolyte. The efficiency of cells was investigated by anchoring QDs of varying sizes on SnO. The best photovoltaic performance of an overall power conversion efficiency of 1.10%, an open-circuit voltage(Voc)of 0.80 V, and a photocurrent density(JSC) of 3.70 m A/cmwere obtained for cells with SnOthickness of5–6 μm and cell area of 0.25 cmunder standard 1 Sun illumination(100 m W/cm). The efficiency was investigated for the same systems under polysulfide electrolyte as well for a comparison. 展开更多
关键词 quantum dot solar cells(qdscs) Electrospinning Cadmium telluride(CdTe) Tin oxide(SnO_2) NANOFIBERS Cobalt complex redox electrolyte
下载PDF
200-nm long TiO_2 nanorod arrays for efficient solid-state Pb S quantum dot-sensitized solar cellsR 被引量:1
6
作者 Zhengguo Zhang Chengwu Shi +3 位作者 Kai Lv Chengfeng Ma Guannan Xiao Lingling Ni 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1214-1218,共5页
To ensure the infiltration of spiro-OMeTAD into the quantum dot-sensitized photoanode and to consider the limit of the hole diffusion length in the spiro-OMeTAD layer, a rutile TiO2 nanorod array with a length of 200 ... To ensure the infiltration of spiro-OMeTAD into the quantum dot-sensitized photoanode and to consider the limit of the hole diffusion length in the spiro-OMeTAD layer, a rutile TiO2 nanorod array with a length of 200 nm, a diameter of 20 nm and an areal density of 720 ram 2 was successfully prepared using a hydrothermal method with an aqueous-grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 ℃ for 75 min. PbS quantum dots were deposited by a spin coating-assisted successive ionic layer adsorption and reaction (spin-SILAR), and all solid-state PbS quantum dot-sensitized TiO2 nanorod array solar cells were fabricated using spiro-OMeTAD as electrolytes. The results revealed that the average crystal size of PbS quantum dots was -78 nm using Pb(NO3)2 as the lead source and remain unchanged with the increase of the number of spin-SILAR cycles. The all solid-state PbS quantum dot-sensitized TiO2 nanorod array solar cells with spin-SILAR cycle numbers of 20, 30 and 40 achieved the photoelectric conversion efficiencies of 3.74%, 4.12% and 3.11%, respectively, under AM 1.5 G illumination (100 mW/cm2). 展开更多
关键词 TiO2 nanomd array PbS quantum dot Spiro-OMeTAD All solid-state sensitized solar cell
下载PDF
CdS Quantum Dots-sensitized TiO_2 Nanotube Arrays for Solar Cells 被引量:1
7
作者 隋小涛 TAO Haizheng +4 位作者 LOU Xianchun WANG Xuelai FENG Jiamin ZENG Tao 赵修建 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期17-21,共5页
CdS quantum dots(QDs) sensitized TiO2 nanotube arrays photoelectrodes were investigated for their photovoltaic performance of quantum dots-sensitized solar cells. The highly ordered TiO2 nanotube arrays(TNAs) were... CdS quantum dots(QDs) sensitized TiO2 nanotube arrays photoelectrodes were investigated for their photovoltaic performance of quantum dots-sensitized solar cells. The highly ordered TiO2 nanotube arrays(TNAs) were synthesized on Ti foils by anodic oxidation method. Then CdS quantum dots were deposited onto the TiO2 nanotube arrays by successive ionic layer absorption and reaction(SILAR) method to serve as the sensitizers. Cd(NO3)2 and Na2S were used as the precursor materials of Cd+ and S2- ions, respectively. It is found that the CdS QDs sensitizer may significantly increase the light response of TiO2 nanotube arrays. With increasing CdS QDs deposition cycles, the visible light response increases. Maximum photocurrent was obtained for the QDs that have an absorption peak at about 500 nm. Under AM 1.5 G illuminations(100 mW cm^-2), a 4.85 mA/cm^2 short circuit current density was achieved, and the maximium energy conversion efficiency of the asprepared CdS QDs-sensitized TNAs solar cells was obtained as high as 0.81% at five SILAR cycles. 展开更多
关键词 quantum dots sensitized solar cell successive ionic layer adsorption and reaction TiO2 vnanotube arrays
下载PDF
Composite Semiconductor Quantum Dots CdSe/CdS Co-sensitized TiO_2 Nanorod Array Solar Cells 被引量:1
8
作者 汪竞阳 章天金 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期876-880,共5页
CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption... CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption and reaction (SILAR) process. The structural and morphological properties of the samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The results indicate that CdSe/CdS QDs are uniformly coated on the surface of the TiO2 nanorods. The shift of light absorption edge was monitored by taking UV-visible absorption spectra. Compared with the absorption spectra of the TiO2 nanorod array, deposition of CdSe/CdS QDs shifts the absorption edge to the higher wavelength. The enhanced light absorption in the visible-light region of CdSe/CdS/TiO2 nanorod array indicates that CdSe/CdS layers can act as co-sensitizers in quantum dots sensitized solar cells (QDSSCs). By optimizing the CdSe layer deposition cycles, a photocurrent of 5.78 mA/cm2, an open circuit photovoltage of 0.469 V and a conversion efficiency of 1.34 % were obtained under an illumination of 100 mw/cm2. 展开更多
关键词 quantum dots TiO2 nanorod array solar cells photovoltaic performance
下载PDF
Photovoltaics and Photoexcited Carrier Dynamics of Double-Layered CdS/CdSe Quantum Dot-Sensitized Solar Cells 被引量:1
9
作者 Taro Toyoda Yohei Onishi +3 位作者 Kenji Katayama Tsuguo Sawada Shuzi Hayase Qing Shen 《材料科学与工程(中英文A版)》 2013年第9期601-608,共8页
关键词 CDSE量子点 太阳能电池 子动力学 载流子 光伏 敏化 光生 TiO2电极
下载PDF
Simply synthesized TiO_2 nanorods as an effective scattering layer for quantum dot sensitized solar cells
10
作者 Mahmoud Samadpour Azam Iraji zad Mehdi Molaei 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期531-538,共8页
TiO2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales ... TiO2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales on the order of one micron. The films are sensitized with CdSe quantum dots (QDs) by successive ionic layer adsorption and reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). Incorporating nanorods in photoanode structures provided 4- to 8-fold enhancement in light scattering, which leads to a high power conversion efficiency, 3.03% (Voc = 497 mV, Jsc = 11.32 mA/cm2, FF = 0.54), in optimized structures. High efficiency can he obtained just by tuning the photoanode structure without further treatments, which will make this system a promising nanostructure for efficient quantum dot sensitized solar cells. 展开更多
关键词 solar cell nanorod quantum dot SCATTERING
下载PDF
Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide
11
作者 Ali Badawi 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期372-377,共6页
The photovoltaic performance of CdS quantum dots sensitized solar cells (QDSSCs) using the 0.2 wt% of reduced graphene oxide and TiO2 nanoparticles (RGO+TiO2 nanocomposite) photoanode is investigated. CdS QDs are... The photovoltaic performance of CdS quantum dots sensitized solar cells (QDSSCs) using the 0.2 wt% of reduced graphene oxide and TiO2 nanoparticles (RGO+TiO2 nanocomposite) photoanode is investigated. CdS QDs are adsorbed onto RGO+TiO2 nanocomposite films by the successive ionic layer adsorption and reaction (SILAR) technique for several cycles. The current density-voltage (J-V) characteristic curves of the assembled QDSSCs are measured at AM1.5 simulated sunlight. The optimal photovoltaic performance for CdS QDSSC was achieved for six SILAR cycles. Solar cells based on the RGO+TiO2 nanocomposite photoanode achieve a 33% increase in conversion efficiency (η) compared with those based on plain TiO2 nanoparticle (NP) photoanodes. The electron back recombination rates decrease significantly for CdS QDSSCs based on RGO+TiO2 nanocomposite photoanodes. The lifetime constant (τ) for CdS QDSSC based on the RGO+TiO2 nanocomposite photoanode is at least one order of magnitude larger than that based on the bare TiO2NPs photoanode. 展开更多
关键词 reduced graphene oxide nanocomposite photoanode back recombination rate quantum dots sensitized solar cell
下载PDF
Recent Development of Quantum Dot Deposition in Quantum Dot-Sensitized Solar Cells
12
作者 Ziwei Li Zhenxiao Pan Xinhua Zhong 《Transactions of Tianjin University》 EI CAS 2022年第5期374-384,共11页
As new-generation solar cells,quantum dot-sensitized solar cells(QDSCs)have the outstanding advantages of low cost and high theoretical efficiency;thus,such cells receive extensive research attention.Their power conve... As new-generation solar cells,quantum dot-sensitized solar cells(QDSCs)have the outstanding advantages of low cost and high theoretical efficiency;thus,such cells receive extensive research attention.Their power conversion efficiency(PCE)has increased from 5%to over 15%in the past decade.However,compared with the theoretical efficiency(44%),the PCE of QDSCs still needs further improvement.The low loading amount of quantum dots(QDs)is a key factor limiting the improvement of cell efficiency.The loading amount of QDs on the surface of the substrate film is important for the performance of QDSCs,which directly affects the light-harvesting ability of the device and interfacial charge recombination.The optimization of QD deposition and the improvement of the loading amount are important driving forces for the rapid development of QDSCs in recent years and a key breakthrough in future development.In this paper,the research progress of QD deposition on the surface of substrate films in QDSCs was reviewed.In addition,the main deposition methods and their advantages and disadvantages were discussed,and future research on the further increase in loading amount was proposed. 展开更多
关键词 quantum dot-sensitized solar cells quantum dot deposition Capping ligand-induced self-assembly Secondary deposition
下载PDF
TiO_2 hierarchical pores/nanorod arrays composite film as photoanode for quantum dot-sensitized solar cells
13
作者 Xing Du Lei Zhao +3 位作者 Xuan He Hui Chen Weixin Li Wei Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第3期1-7,共7页
Power conversion efficiency(PCE) of quantum dot-sensitized solar cells(QDSSCs) was boosted in a TiO_2 composite film(TCSF) with delicate design in structure where TiO_2 hierarchical porous film(THPF) situated on the t... Power conversion efficiency(PCE) of quantum dot-sensitized solar cells(QDSSCs) was boosted in a TiO_2 composite film(TCSF) with delicate design in structure where TiO_2 hierarchical porous film(THPF) situated on the top of TiO_2 nanorod arrays film(TNAF). In this case, TNAF could supply efficient scattering centers for high light harvesting and direct electrical pathways for fast electron transfer while the THPF could offer porous channels for loading high quantity of previously synthetized quantum dots(QDs) and facilitate the penetration of electrolyte. Meanwhile, in this specific configuration, the presence of anatase–rutile heterojunction at the interface could help the rutile TNAF layer to efficiently collect photo-injected electrons from the anatase THPF layer thus suppressing the recombination of electrons and holes in electrolyte. The results showed that the PCE of QDSSC based on the TNAF photoanode was about 1.4-fold higher(η = 3.05%, J_(sc)= 15.86 m A cm^(-2), V_(oc)= 0.602 V, FF = 0.319) than that of device based on pure THPF(η = 2.20%, J_(sc)= 13.82 m A cm^(-2), V_(oc)= 0.572 V, FF = 0.278). 展开更多
关键词 HIERARCHICAL pores Nanorod ARRAYS Composite PHOTOANODE quantum dot-sensitized solar cells
下载PDF
Selenium cooperated polysulfide electrolyte for efficiency enhancement of quantum dot-sensitized solar cells
14
作者 Mengsi Zhou Gencai Shen +1 位作者 Zhenxiao Pan Xinhua Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期147-152,共6页
The modification of polysulfide electrolyte with additives has been demonstrated as an effective way to improve the photovoltaic performance of quantum dot-sensitized solar cells(QDSCs). Most of these additives can in... The modification of polysulfide electrolyte with additives has been demonstrated as an effective way to improve the photovoltaic performance of quantum dot-sensitized solar cells(QDSCs). Most of these additives can inhibit the charge recombination processes at photoanode/electrolyte interface and favor the improvement of V oc of cell devices. Herein, we showed that the incorporation of elemental selenium(Se) in polysulfide electrolyte to form polyselenosulfide species can notably improve the performance of QDSCs. Unlike previous reports, we present here an integrated investigation of the effects of polyselenosulfide species in polysulfide electrolyte on the photovoltaic performance of QDSCs from both of the photoanode and counter electrode(CE) aspects. Electrochemical impedance spectroscopy(IS) and opencircuit voltage-decay(OCVD) measurements demonstrated that the introduction of Se into polysulfide electrolyte can not only retard charge recombination at photoanode/electrolyte interface, but also reduce the charge transfer resistance at CE/electrolyte interface, resulting in the improvement of J sc and FF values. Consequently, the average efficiency of Zn-Cu-In-Se QDSCs was improved from 9.26% to 9.78% under AM 1.5 G full one sun illumination. 展开更多
关键词 quantum dot-sensitized solar cells POLYSULFIDE ELECTROLYTE SELENIUM Charge transfer COUNTER electrode
下载PDF
A series of conducting gel electrolytes for quasi-solid-state quantum dot-sensitized solar cells with boosted electron transfer processes
15
作者 Qiming Yang Wen Yang +1 位作者 Jialong Duan Peizhi Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期335-341,共7页
To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective b... To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective by quasi-solid-state quantum dot-sensitized solar cells from a series of conducting gel electrolytes composed of polyacrylamide(PAAm) matrix and conductive polymers [polyaniline(PANi), polypyrrole(PPy) or polythiophene(PT)]. The reduction of Sx2- occurred in both interface and three dimensional framework of conducting gel electrolyte as a result of the electrical conduction of PANi, PPy and PT toward refluxed electrons from external circuit to Pt electrode. The resulting solar cells can yield the solarto-electrical conversion efficiency of 2.33%, 2.25% and 1.80% for PANi, PPy and PT based gel electrolytes,respectively. Those solar cells possessed much higher efficiency than that of 1.74% based on pure PAAm gel electrolyte owing to the enhanced kinetics for Sx2- ? S2- conversion. More importantly, the stability of quasi-solid-state solar cell is significantly advanced, arising from the localization of liquid electrolyte into the three dimensional framework and therefore reduced leakage and volatilization. 展开更多
关键词 quantum dot-sensitized solar cells Conducting gel electrolyte Charge transfer Stability Micropomus structure
下载PDF
Photovoltaic Properties of CdSe Quantum Dot Sensitized Inverse Opal TiO<sub>2</sub>Solar Cells: The Effect of TiCl<sub>4</sub>Post Treatment
16
作者 Motoki Hironaka Taro Toyoda +3 位作者 Kanae Hori Yuhei Ogomi Shuzi Hayase Qing Sheng 《Journal of Modern Physics》 2017年第4期522-530,共9页
Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. T... Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. The morphology of TiO2 electrode is one of the most important factors in QDSSCs. Inverse opal (IO) TiO2 electrode, which has periodic mesoporous structure, is useful for QDSSCs because of better penetration of electrolyte than conventional nanoparticulate TiO2 electrode. In addition, the ordered three dimensional structure of IO-TiO2 would be better for electron transport. We have found that open circuit voltage Voc of QDSSCs with IO-TiO2 electrodes was much higher (0.2 V) than that with nanoparticulate TiO2 electrodes. But short circuit current density Jsc was lower in the case of IO-TiO2 electrodes because of the smaller surface area of IO-TiO2. In this study, for increasing surface area of IO-TiO2, we applied TiCl4 post treatment on IO-TiO2 and investigated the effect of the post treatment on photovoltaic properties of CdSe QD sensitized IO-TiO2 solar cells. It was found that Jsc could be enhanced due to TiCl4 post treatment, but decreased again for more than one cycle treatment, which indicates excess post treatment may lead to worse penetration of electrolyte. Our results indicate that the appropriate post treatment can improve the energy conversion efficiency of the QDSSCs. 展开更多
关键词 quantum dot sensitized solar cells Inverse OPAL Structure TICL4 Post Treatment Morphology of the TiO2 Electrode
下载PDF
Advantageous properties of halide perovskite quantum dots towards energy-efficient sustainable applications
17
作者 Qian Zhao Shuo Wang +9 位作者 Young-Hoon Kim Shekhar Mondal Qingqing Miao Simiao Li Danya Liu Miao Wang Yaxin Zhai Jianbo Gao Abhijit Hazarika Guo-Ran Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期949-965,共17页
As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perov... As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perovskites are showing the potential to make distinct marks in the fields of electronics,optoelectronics and photonics.The so-called perovskite quantum dots(PQDs)not only possess the most important features of LHP materials,i.e.,the unusual high defect tolerance,but also demonstrate clear quantum size effects,along with exhibiting desirable optoelectronic properties such as near perfect photoluminescent quantum yield,multiple exciton generation and slow hot-carrier cooling.Here,we review the advantageous properties of these nanoscale perovskites and survey the prospects for diverse applications which include lightemitting devices,solar cells,photocatalysts,lasers,detectors and memristors,emphasizing the distinct superiorities as well as the challenges. 展开更多
关键词 Perovskite quantum dot LIGHT-EMITTING Detector Laser solar cell
下载PDF
Tm3+-doped NaYF4 microrods up-converting layer for efficient quantum dots sensitized solar cells
18
《纳米科技》 2015年第6期48-55,共8页
下载PDF
Recent progress of colloidal quantum dot based solar cells 被引量:2
19
作者 卫会云 李冬梅 +1 位作者 郑新和 孟庆波 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期49-63,共15页
Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar c... Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar cells (QDSCs) and FbX (X = S, Se) based CQD solar cells have been achieved in recent years, and the power conversion efficiencies (PCEs) ex- ceeding 12% were reported so far. In this review, we will focus on the recent progress in CQD solar cells. We firstly summarize the advance of CQD sensitizer materials and the strategies for enhancing carrier collection efficiency in QD- SCs, including developing multi-component alloyed CQDs and core-shell structured CQDs, as well as various methods to suppress interfacial carrier recombination. Then, we discuss the device architecture development of PbX CQD based solar cells and surface/interface passivation methods to increase light absorption and carrier extraction efficiencies. Finally, a short summary, challenge, and perspective are given. 展开更多
关键词 colloidal quantum dot solar cells quantum-dot sensitized solar cells PbX quantum dot solar cells interfacial passivation
下载PDF
Surface-Modified Graphene Oxide/Lead Sulfide Hybrid Film-Forming Ink for High-Efficiency Bulk Nano-Heterojunction Colloidal Quantum Dot Solar Cells 被引量:2
20
作者 Yaohong Zhang Guohua Wu +7 位作者 Chao Ding Feng Liu Dong Liu Taizo Masuda Kenji Yoshino Shuzi Hayase Ruixiang Wang Qing Shen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期56-69,共14页
Solution-processed colloidal quantum dot solar cells(CQDSCs) is a promising candidate for new generation solar cells.To obtain stable and high performance lead sulfide(PbS)-based CQDSCs,high carrier mobility and low n... Solution-processed colloidal quantum dot solar cells(CQDSCs) is a promising candidate for new generation solar cells.To obtain stable and high performance lead sulfide(PbS)-based CQDSCs,high carrier mobility and low non-radiative recombination center density in the PbS CQDs active layer are required.In order to effectively improve the carrier mobility in PbS CQDs layer of CQDSCs,butylamine(BTA)-modified graphene oxide(BTA@GO) is first utilized in PbS-PbX2(X=I-,Br-) CQDs ink to deposit the active layer of CQDSCs through one-step spin-coating method.Such surface treatment of GO dramatically upholds the intrinsic superior hole transfer peculiarity of GO and attenuates the hydrophilicity of GO in order to allow for its good dispersibility in ink solvent.The introduction of B TA@GO in CQDs layer can build up a bulk nano-heterojunction architecture,which provides a smooth charge carrier transport channel in turn improves the carrier mobility and conductivity,extends the carriers lifetime and reduces the trap density of PbS-PbX2 CQDs film.Finally,the BTA@GO/PbS-PbX2 hybrid CQDs film-based relatively large-area(0.35 cm2) CQDSCs shows a champion power conversion efficiency of 11.7% which is increased by 23.1% compared with the control device. 展开更多
关键词 quantum dot solar cells PbS colloidal quantum dots Hole extraction Graphene oxide Surface modified
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部