期刊文献+
共找到1,247篇文章
< 1 2 63 >
每页显示 20 50 100
Energy shift and subharmonics induced by nonlinearity in a quantum dot system
1
作者 周圆 曹刚 +1 位作者 李海欧 郭国平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期135-139,共5页
The presence of anticrossings induced by coupling between two states causes curvature in energy levels, yielding a nonlinearity in the quantum system. When the system is driven back and forth along the bending energy ... The presence of anticrossings induced by coupling between two states causes curvature in energy levels, yielding a nonlinearity in the quantum system. When the system is driven back and forth along the bending energy levels, subharmonic transitions and energy shifts can be observed, which would cause a significant influence as the system is applied to quantum computing. In this paper, we study a longitudinally driven singlet-triplet(ST) system in a double quantum dot(DQD)system, and illustrate the consequences of nonlinearity by driving the system close to the anticrossings. We provide a straightforward theory to quantitatively describe the energy shift and subharmonics caused by nonlinearity, and find good agreement between our theoretical result and the numerical simulation. Our results reveal the existence of nonlinearity in the vicinity of anticrossings and provide a direct way of analytically assessing its impact, which can be applied to other quantum systems without excessive labor. 展开更多
关键词 quantum dot quantum computing nonlinear physics
下载PDF
Steering quantum nonlocalities of quantum dot system suffering from decoherence
2
作者 Huan Yang Ling-Ling Xing +2 位作者 Zhi-Yong Ding Gang Zhang Liu Ye 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期185-195,共11页
The important applications of quantum dot system are to implement logic operations and achieve universal quantum computing based on different quantum nonlocalities.Here,we characterize the quantum steering,Bell nonloc... The important applications of quantum dot system are to implement logic operations and achieve universal quantum computing based on different quantum nonlocalities.Here,we characterize the quantum steering,Bell nonlocality,and nonlocal advantage of quantum coherence(NAQC)of quantum dot system suffering nonunital and unital channels.The results reveal that quantum steering,Bell nonlocality,and NAQC can display the traits of dissipation,enhancement,and freezing.One can achieve the detections of quantum steering,Bell nonlocality,and NAQC of quantum dot system in different situations.Among these quantum nonlocalities,NAQC is the most fragile,and it is most easily influenced by different system parameters.Furthermore,considering quantum dot system coupling with amplitude damping channel and phase damping channel,these quantum nonlocalities degenerate with the enlargement of the channel parameters t andΓ.Remarkably,measurement reversal can effectively control and enhance quantum steering,Bell nonlocality,and NAQC of quantum dot system suffering from decoherence,especially in the scenarios of the amplitude damping channel and strong operation strength. 展开更多
关键词 quantum nonlocalities quantum dot system DECOHERENCE STEERING
下载PDF
Effects of van Hove Singularities on Transport of Quantum Dot Systems in Kondo Regime
3
作者 HU Zhi-Ming YANG Kai-Hua TIAN Guang-Shan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3X期563-572,共10页
In the present paper, we study the effect of van Hove singularities of conduction electron on the transport of a single quantum dot system in the Kondo regime. By using both the equation-of-motion and the noncrossing ... In the present paper, we study the effect of van Hove singularities of conduction electron on the transport of a single quantum dot system in the Kondo regime. By using both the equation-of-motion and the noncrossing approximation techniques, we show that the corrections caused by these singularities are actually minor. It can be explained by observing that the singularities in the equations, which determine the electronic DOS on the dot, are integrable. Furthermore, we find that, although each line width function is divergent at van Hove singular points, the total divergence is canceled out in the final formula to calculate the current through the system. Therefore, as far as the qualitative properties of the system is concerned, these singularities can be ignored and the wide-band approximation can be safely used in calculation. 展开更多
关键词 quantum dot system van Hove singularities Kondo effect
下载PDF
Single-particle distribution function of a quantum dot system at finite temperature
4
作者 文瑞 张德平 田光善 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期416-422,共7页
In the present paper, we shall rigorously re-establish the result of the single-particle function of a quantum dot system at finite temperature. Unlike the proof given in our previous work (Phys. Rev. B 74 195414 (2... In the present paper, we shall rigorously re-establish the result of the single-particle function of a quantum dot system at finite temperature. Unlike the proof given in our previous work (Phys. Rev. B 74 195414 (2006)), we take a different approach, which does not exploit the explicit expression of the Gibbs distribution function. Instead, we only assume that the statistical distribution function of the quantum dot system is thermodynamically stable. As a result, we are able to show clearly that the electronic structure in the quantum dot system is completely determined by its thermodynamic stability. Furthermore, the weaker requirements on the statistical distribution function also make it possible to apply the same method to the quantum dot systems in non-equilibrium states. 展开更多
关键词 quantum dot systems electron distribution function rigorous results
下载PDF
Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains
5
作者 Ze-Long He Qiang Li +2 位作者 Kong-Fa Chen Ji-Yuan Bai Sui-Hu Dang 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第9期66-70,共5页
A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If ... A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If two quantum dots are added on each side of the PCDQD system, additional Breit Wigner and Fano resonances occur in the conductance spectra. If quantum dots are added on one side of the system, small Fano resonances can be observed in the conductance spectra. Adjusting the number of side-coupled quantum dots, the anti-resonance bands emerge at different positions, which makes the system applicable as a quantum switching device. Moreover, the I-V characteristic curve presents the step characteristic and the width of the step decreases with increasing the number of side-coupled quantum dots. 展开更多
关键词 Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double quantum dot system with Two Multi-quantum dot Chains QDs
下载PDF
Entanglement Transfer Between Cavity Fields and Excitons in a Driven Quantum Dot System 被引量:1
6
作者 ZENG Tian-Hai SHAO Bin ZOU Jian 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第4X期645-648,共4页
We investigate entanglement transfer from two separate cavities to the excitons in two quantum dots separately placed in the two cavities. The cavity fields and the excitons are treated as two continuous-variable (CV... We investigate entanglement transfer from two separate cavities to the excitons in two quantum dots separately placed in the two cavities. The cavity fields and the excitons are treated as two continuous-variable (CV) subsystems. The time-dependent characteristic functions in the Wigner representation for the two subsystems are analytically obtained. Under the conditions that one of the two CV subsystems is initially prepared in a two-mode squeezed vacuum state and the other in its lowest energy state, we show that the entanglement reciprocation between the cavity fields and the excitons is realizable. 展开更多
关键词 entanglement transfer quantum dot logarithmic negativity
下载PDF
Quantum Information Transfer from a Double Quantum Dot System to a Cavity Field
7
作者 谭庆收 董勇 匡乐满 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第1期71-74,共4页
In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and... In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD. 展开更多
关键词 quantum information transfer double quantum dot cavity field charge qubit coherent state
下载PDF
Electron transfer properties of double quantum dot system in a fluctuating environment
8
作者 Lujing Jiang Kang Lan +1 位作者 Zhenyu Lin Yanhui Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期151-158,共8页
Using the innovative method of the additional Bloch vector,the electron transfer properties of a double quantum dot(DQD) system measured by a quantum point contact(QPC) in a fluctuating environment are investigated.Th... Using the innovative method of the additional Bloch vector,the electron transfer properties of a double quantum dot(DQD) system measured by a quantum point contact(QPC) in a fluctuating environment are investigated.The results show that the environmental noises in transverse and longitudinal directions play different roles in the dynamical evolution of the open quantum systems.Considering the DQD with symmetric energy level,the Fano factor exhibits a slight peak with the increase of transverse noise amplitude σ_(T),which provides a basis for distinguishing dynamical phenomena caused by different directional fluctuation noises in symmetric DQD structures by studying the detector output.In the case of asymmetric DQD,the dependence of a detector current involving the level displacement is distinct when increasing the transverse noise damping coefficient τ_(T) and the longitudinal noise damping coefficient τ_(ε) respectively.Meanwhile,the transverse noise damping coefficient τ_(T) could significantly reduce the Fano factor and enhance the stability of the quantum system compared with the longitudinal one.The Fano factors with stable values as the enhancement of noise amplitudes show different external influences from the detector measurement,and provide a numerical reference for adjusting the noise amplitudes in both transverse and longitudinal directions appropriately in a microscopic experimental process to offset the decoherence effect caused by the measurements.Finally,the research of average waiting time provides unique insights to the development of single electron transfer theory in the short-time limit. 展开更多
关键词 double quantum dots fluctuating environment electron transfer noise
下载PDF
Fano effect of a laterally coupled vertical triple quantum dot system
9
作者 贺泽龙 吕天全 张迪 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期445-448,共4页
Using the nonequilibrium Green's function technique,electron transport through a laterally coupled vertical triple quantum dot is investigated.The conductance as a function of electron energy is numerically calculate... Using the nonequilibrium Green's function technique,electron transport through a laterally coupled vertical triple quantum dot is investigated.The conductance as a function of electron energy is numerically calculated.The evolution of the conductance strongly depends on the configuration of dot levels and interdot coupling strengths. 展开更多
关键词 nonequilibrium Green's function Fano effect quantum dot electron transport
下载PDF
Fano effect of a parallel-coupled triple Rashba quantum dot system
10
作者 贺泽龙 吕天全 +3 位作者 崔莲 薛惠杰 李林军 尹海涛 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期456-463,共8页
Using the nonequilibrium Keldysh Green's function technique, the Fano effect of a parallel-coupled triple Rashba quantum dot system is investigated. The conductance as a function of electron energy is numerically cal... Using the nonequilibrium Keldysh Green's function technique, the Fano effect of a parallel-coupled triple Rashba quantum dot system is investigated. The conductance as a function of electron energy is numerically calculated. Compared with the case of a parallel-coupled double quantum dot system, two additional Fano resonance peaks occur in the conductance spectrum. By adjusting the structural parameters, the two Fano resonance peaks may change into the resoaance peaks. In addition, the influence of Rashba spin-orbit interaction on the conductance is studied. 展开更多
关键词 nonequilibrium Green's function Fano effect quantum dot electronic transport
下载PDF
Using a quantum dot system to realize perfect state transfer
11
作者 李季 吴世海 +1 位作者 张雯雯 惠小强 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期61-65,共5页
There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Left. 65 297] where a quantum dot system is used to realize quantum communication. To ov... There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Left. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler-London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST. 展开更多
关键词 quantum communication spin chain quantum dot
下载PDF
Majorana fermion realization and relevant transport processes in a triple-quantum dot system
12
作者 邓明勋 郑诗菡 +2 位作者 杨谋 胡梁宾 王瑞强 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期320-326,共7页
Nonequilibrium electronic transports through a system hosting three quantum dots hybridized with superconductors are investigated. By tuning the relative positions of the dot levels, we illustrate the existence of Maj... Nonequilibrium electronic transports through a system hosting three quantum dots hybridized with superconductors are investigated. By tuning the relative positions of the dot levels, we illustrate the existence of Majorana fermions and show that the Majorana feimions will either survive separately on single dots or distribute themselves among different dots with tunable probabilities. As a result, different physical mechanisms appear, including local Andreev reflection(LAR),cross Andreev reflection(CAR), and cross resonant tunneling(CRT). The resulting characteristics may be used to reveal the unique properties of Majorana fermions. In addition, we discuss the spin-polarized transports and find a pure spin current and a spin filter effect due to the joint effect of CRT and CAR, which is important for designing spintronic devices. 展开更多
关键词 Majorana fermion quantum dots hybridized with superconductors spin-polarized transports
下载PDF
Phonon-dependent transport through a serially coupled double quantum dot system
13
作者 M.Bagheri Tagani H.Rahimpour Soleimani 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期510-515,共6页
Using Keldysh nonequilibrium Green function formalism and mapping a many-body electron-phonon interaction onto a one body problem, the electron transport through a serially coupled double quantum dot system is analyze... Using Keldysh nonequilibrium Green function formalism and mapping a many-body electron-phonon interaction onto a one body problem, the electron transport through a serially coupled double quantum dot system is analyzed. The influence of the electron-phonon interaction, temperature, detuning, and interdot tunneling on the transmission coefficient and current is studied. Our results show that the electron-phonon interaction results in the appearance of the side peaks in the transmission coefficient, whose height is strongly dependent on the phonon temperature. We have also found that the inequality of the electron-phonon interaction strength in two dots gives rise to an asymmetry in the current-voltage characteristic. In addition, the temperature difference between the phonon and electron subsystems results in the reduction of the saturated current and the destruction of the step-like behavior of the current. It is also observed that the detuning can improve the magnitude of the current by compensating the mismatch of the quantum dots energy levels induced by the electron-phonon interaction. 展开更多
关键词 quantum dot electron-phonon interaction Keldysh nonequilibrium Green function formalism current-voltage characteristic
下载PDF
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C_(3)N_(4) nanotube composite photocatalysts for antibiotic photodegradation and H2 production 被引量:2
14
作者 Jingshu Yuan Yao Zhang +2 位作者 Xiaoyan Zhang Junjie Zhang Shen’gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期165-178,共14页
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r... Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion. 展开更多
关键词 N-doped TiO_(2) N-doped graphene quantum dots P-doped g-C_(3)N_(4) porous hollow nanotube heterojunction photocatalysis
下载PDF
Proton‑Prompted Ligand Exchange to Achieve High‑Efficiency CsPbI_(3) Quantum Dot Light‑Emitting Diodes 被引量:1
15
作者 Yanming Li Ming Deng +2 位作者 Xuanyu Zhang Lei Qian Chaoyu Xiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期53-62,共10页
CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improv... CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improvement of device performance.Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control.Here,we proposed a new ligand exchange strategy using a proton-prompted insitu exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI_(3)QDs.This exchange strategy maintained the size and morphology of CsPbI_(3)QDs and improved the optical properties and the conductivity of CsPbI_(3)QDs films.As a result,high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45%and an operational half-life of 10.79 h. 展开更多
关键词 CsPbI_(3) perovskite quantum dots Light-emitting diodes Ligand exchange Proton-prompted in-situ exchange
下载PDF
Experimental and computational study of annealed nickel sulfide quantum dots for catalytic and antibacterial activity
16
作者 Muhammad Ikram Sawaira Moeen +5 位作者 Ali Haider Anwar Ul-Hamid Haya Alhummiany Hamoud H.Somaily Souraya Goumri-Said Mohammed Benali Kanoun 《Nano Materials Science》 EI CAS CSCD 2024年第3期355-364,共10页
This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size ... This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions. 展开更多
关键词 NiS_(2) ANTIBACTERIAL quantum dots DYE degradation DFT
下载PDF
Advantageous properties of halide perovskite quantum dots towards energy-efficient sustainable applications
17
作者 Qian Zhao Shuo Wang +9 位作者 Young-Hoon Kim Shekhar Mondal Qingqing Miao Simiao Li Danya Liu Miao Wang Yaxin Zhai Jianbo Gao Abhijit Hazarika Guo-Ran Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期949-965,共17页
As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perov... As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perovskites are showing the potential to make distinct marks in the fields of electronics,optoelectronics and photonics.The so-called perovskite quantum dots(PQDs)not only possess the most important features of LHP materials,i.e.,the unusual high defect tolerance,but also demonstrate clear quantum size effects,along with exhibiting desirable optoelectronic properties such as near perfect photoluminescent quantum yield,multiple exciton generation and slow hot-carrier cooling.Here,we review the advantageous properties of these nanoscale perovskites and survey the prospects for diverse applications which include lightemitting devices,solar cells,photocatalysts,lasers,detectors and memristors,emphasizing the distinct superiorities as well as the challenges. 展开更多
关键词 Perovskite quantum dot LIGHT-EMITTING Detector Laser Solar cell
下载PDF
Coupling of BiOCl Ultrathin Nanosheets with Carbon Quantum Dots for Enhanced Photocatalytic Performance
18
作者 Pin Song Xiaoyu Fang +14 位作者 Wei Jiang Yuyang Cao Daobin Liu Shiqiang Wei Jun Du Lang Sun Lei Zhao Song Liu Yuzhu Zhou Jun Di Chade Lv Bijun Tang Jiefu Yang Tingting Kong Yujie Xiong 《Transactions of Tianjin University》 EI CAS 2024年第3期211-220,共10页
Over the past few decades,photocatalysis technology has received extensive attention because of its potential to mitigate or solve energy and environmental pollution problems.Designing novel materials with outstanding... Over the past few decades,photocatalysis technology has received extensive attention because of its potential to mitigate or solve energy and environmental pollution problems.Designing novel materials with outstanding photocatalytic activities has become a research hotspot in this field.In this study,we prepared a series of photocatalysts in which BiOCl nanosheets were modified with carbon quantum dots(CQDs)to form CQDs/BiOCl composites by using a simple solvothermal method.The photocatalytic performance of the resulting CQDs/BiOCl composite photocatalysts was assessed by rhodamine B and tetracycline degradation under visible-light irradiation.Compared with bare BiOCl,the photocatalytic activity of the CQDs/BiOCl composites was significantly enhanced,and the 5 wt%CQDs/BiOCl composite exhibited the highest photocatalytic activity with a degradation efficiency of 94.5%after 30 min of irradiation.Moreover,photocatalytic N_(2)reduction performance was significantly improved after introducing CQDs.The 5 wt%CQDs/BiOCl composite displayed the highest photocatalytic N_(2)reduction performance to yield NH_3(346.25μmol/(g h)),which is significantly higher than those of 3 wt%CQDs/BiOCl(256.04μmol/(g h)),7 wt%CQDs/BiOCl(254.07μmol/(g h)),and bare BiOCl(240.19μmol/(g h)).Our systematic characterizations revealed that the key role of CQDs in improving photocatalytic performance is due to their increased light harvesting capacity,remarkable electron transfer ability,and higher photocatalytic activity sites. 展开更多
关键词 Carbon quantum dots BiOCl Rhodamine B TETRACYCLINE PHOTOCATALYSIS
下载PDF
NbN quantum dots anchored hollow carbon nanorods as efficient polysulfide immobilizer and lithium stabilizer for Li-S full batteries
19
作者 Fei Ma Zhuo Chen +9 位作者 Katam Srinivas Ziheng Zhang Yu Wu Dawei Liu Hesheng Yu Yue Wang Xinsheng Li Ming-qiang Zhu Qi Wu Yuanfu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期260-271,I0007,共13页
The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispers... The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode. 展开更多
关键词 Dual-functional host NbN quantum dots Shuttle effect Dendrite-free Li anode Li-S full batteries
下载PDF
Effective Activation of Melamine for Synchronous Synthesis of Catalytically Active Nanosheets and Fluorescence-Responsive Quantum Dots
20
作者 Jie Xuan Guijian Guan Ming-Yong Han 《Transactions of Tianjin University》 EI CAS 2024年第3期284-296,共13页
Because of the low reactivity of cyclic nitrides,liquid-phase synthesis of carbon nitride introduces challenges despite its favorable potential for energy-efficient preparation and superior applications.In this study,... Because of the low reactivity of cyclic nitrides,liquid-phase synthesis of carbon nitride introduces challenges despite its favorable potential for energy-efficient preparation and superior applications.In this study,we demonstrate a strong interaction between citric acid and melamine through experimental observation and theoretical simulation,which eff ectively activates melamine-condensation activity and produces carbon-rich carbon nitride nanosheets(CCN NSs)during hydrothermal reaction.Under a large specific surface area and increased light absorption,these CCN NSs demonstrate significantly enhanced photocatalytic activity in CO_(2) reduction,increasing the CO production rate by approximately tenfold compared with hexagonal melamine(h-Me).Moreover,the product selectivity of CCN NSs reaches up to 93.5%to generate CO from CO_(2).Furthermore,the annealed CCN NSs exhibit a CO conversion rate of up to 95.30μmol/(g h),which indicates an 18-fold increase compared with traditional carbon nitride.During the CCN NS synthesis,nitrogen-doped carbon quantum dots(NDC QDs)are simultaneously produced and remain suspended in the supernatant after centrifugation.These QDs disperse well in water and exhibit excellent luminescent properties(QY=67.2%),allowing their application in the design of selective and sensitive sensors to detect pollutants such as pesticide 2,4-dichlorophenol with a detection limit of as low as 0.04μmol/L.Notably,the simultaneous synthesis of CCN NSs and NDC QDs provides a cost-eff ective and highly efficient process,yielding products with superior capabilities for catalytic conversion of CO_(2) and pollutant detection,respectively. 展开更多
关键词 Carbon nitride Hydrothermal reaction PHOTOCATALYSIS Carbon dioxide quantum dots
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部