The problem of computing geometric measure of quantum entanglement for symmetric pure states can be regarded as the problem of finding the largest unitary symmetric eigenvalue(US-eigenvalue)for symmetric complex tenso...The problem of computing geometric measure of quantum entanglement for symmetric pure states can be regarded as the problem of finding the largest unitary symmetric eigenvalue(US-eigenvalue)for symmetric complex tensors,which can be taken as a multilinear optimization problem in complex number field.In this paper,we convert the problem of computing the geometric measure of entanglement for symmetric pure states to a real polynomial optimization problem.Then we use Jacobian semidefinite relaxation method to solve it.Some numerical examples are presented.展开更多
基金the Research Programme of National University of Defense Technology(No.ZK16-03-45).
文摘The problem of computing geometric measure of quantum entanglement for symmetric pure states can be regarded as the problem of finding the largest unitary symmetric eigenvalue(US-eigenvalue)for symmetric complex tensors,which can be taken as a multilinear optimization problem in complex number field.In this paper,we convert the problem of computing the geometric measure of entanglement for symmetric pure states to a real polynomial optimization problem.Then we use Jacobian semidefinite relaxation method to solve it.Some numerical examples are presented.