We propose a scheme to generate maximally entangled states of two distant Bose–Einstein condensates,which are trapped in different potential wells of a one-dimensional optical lattice. We show how such maximally enta...We propose a scheme to generate maximally entangled states of two distant Bose–Einstein condensates,which are trapped in different potential wells of a one-dimensional optical lattice. We show how such maximally entangled state can be used to test the Bell inequality and realize quantum teleportation of a Bose–Einstein condensate state. The scheme proposed here is based on the interference of Bose-Einstein condensates leaking out from different potential wells of optical lattice. It is briefly pointed out that this scheme can be extended to generate maximally entangled Greenberger–Horne–Zeilinger(GHZ) states of 2m(m > 1) distant Bose–Einstein condensates.展开更多
We review our recent theoretical advances in quantum information and many body physics with cold atoms in various external potential, such as harmonic potential, kagome optical lattice, triangular optical lattice, and...We review our recent theoretical advances in quantum information and many body physics with cold atoms in various external potential, such as harmonic potential, kagome optical lattice, triangular optical lattice, and honeycomb lattice. The many body physics of cold atom in harmonic potential is investigated in the frame of mean-field Gross-Pitaevskii equation. Then the quantum phase transition and strongly correlated effect of cold atoms in triangular optical lattice, and the interacting Dirac fermions on honeycomb lattice, are investigated by using cluster dynamical mean-field theory and continuous time quantum Monte Carlo method. We also study the quantum spin Hall effect in the kagome optical lattice.展开更多
High-precision sensing of vectorial forces has broad impact on both fundamental research and technological applications such as the examination of vacuum fluctuations and the detection of surface roughness of nanostru...High-precision sensing of vectorial forces has broad impact on both fundamental research and technological applications such as the examination of vacuum fluctuations and the detection of surface roughness of nanostructures.Recent years have witnessed much progress on sensing alternating electromagnetic forces for the rapidly advancing quantum technology-orders of magnitude improvement has been accomplished on the detection sensitivity with atomic sensors,whereas such high-precision measurements for static electromagnetic forces have rarely been demonstrated.Here,based on quantum atomic matter waves confined by a two-dimensional optical lattice,we perform precision measurement of static electromagnetic forces by imaging coherent wave mechanics in the reciprocal space.The lattice confinement causes a decoupling between real-space and reciprocal dynamics,and provides a rigid coordinate frame for calibrating the wavevector accumulation of the matter wave.With that we achieve a stateof-the-art sensitivity of 2.30(8)×10^(-26) N/√Hz.Long-term stabilities on the order of 10^(-28) N are observed in the two spatial components of a force,which allows probing atomic Van der Waals forces at one millimeter distance.As a further illustrative application,we use our atomic sensor to calibrate the control precision of an alternating electromagnetic force applied in the experiment.Future developments of this method hold promise for delivering unprecedented atom-based quantum force sensing technologies.展开更多
基金Supported by National Fundamental Research Program,National Natural Science Foundation of China under Grant Nos.11274295,2011cba00200Doctor Foundation of Education Ministry of China under Grant No.20113402110059
文摘We propose a scheme to generate maximally entangled states of two distant Bose–Einstein condensates,which are trapped in different potential wells of a one-dimensional optical lattice. We show how such maximally entangled state can be used to test the Bell inequality and realize quantum teleportation of a Bose–Einstein condensate state. The scheme proposed here is based on the interference of Bose-Einstein condensates leaking out from different potential wells of optical lattice. It is briefly pointed out that this scheme can be extended to generate maximally entangled Greenberger–Horne–Zeilinger(GHZ) states of 2m(m > 1) distant Bose–Einstein condensates.
基金supported by the National Natural Science Foundation of China (10934010, 60978019 and 11104064)the National Basic Research Program of China (2009CB930701, 2010CB922904,2011CB921502 and 2012CB821300)+1 种基金the Research Grants Council of Hong Kong (11061160490 and 1386-N-HKU748/10)Zhang X F is also supported by the China Postdoctoral Science Foundation (2011M500032)
文摘We review our recent theoretical advances in quantum information and many body physics with cold atoms in various external potential, such as harmonic potential, kagome optical lattice, triangular optical lattice, and honeycomb lattice. The many body physics of cold atom in harmonic potential is investigated in the frame of mean-field Gross-Pitaevskii equation. Then the quantum phase transition and strongly correlated effect of cold atoms in triangular optical lattice, and the interacting Dirac fermions on honeycomb lattice, are investigated by using cluster dynamical mean-field theory and continuous time quantum Monte Carlo method. We also study the quantum spin Hall effect in the kagome optical lattice.
基金supported by the National Program on Key Basic Research Project of China (2018YFA0305601, 2021YFA07183012021YFA1400900)+4 种基金the National Natural Science Foundation of China (61727819, 11934002, and 11874073)Shanghai Municipal Science and Technology Major Project (2019SHZDZCX01)the Chinese Academy of Sciences Priority Research Program(XDB35020100)the Science and Technology Major Project of Shanxi (202101030201022)the Space Application System of China Manned Space Program
文摘High-precision sensing of vectorial forces has broad impact on both fundamental research and technological applications such as the examination of vacuum fluctuations and the detection of surface roughness of nanostructures.Recent years have witnessed much progress on sensing alternating electromagnetic forces for the rapidly advancing quantum technology-orders of magnitude improvement has been accomplished on the detection sensitivity with atomic sensors,whereas such high-precision measurements for static electromagnetic forces have rarely been demonstrated.Here,based on quantum atomic matter waves confined by a two-dimensional optical lattice,we perform precision measurement of static electromagnetic forces by imaging coherent wave mechanics in the reciprocal space.The lattice confinement causes a decoupling between real-space and reciprocal dynamics,and provides a rigid coordinate frame for calibrating the wavevector accumulation of the matter wave.With that we achieve a stateof-the-art sensitivity of 2.30(8)×10^(-26) N/√Hz.Long-term stabilities on the order of 10^(-28) N are observed in the two spatial components of a force,which allows probing atomic Van der Waals forces at one millimeter distance.As a further illustrative application,we use our atomic sensor to calibrate the control precision of an alternating electromagnetic force applied in the experiment.Future developments of this method hold promise for delivering unprecedented atom-based quantum force sensing technologies.