For the identification and control problem of hyperchaotic Lorenz system,a method of feedback compensation control based on quantum inspired PSO and wavelet neural network(PSOQI-Wavelet Neural Network)is proposed.Firs...For the identification and control problem of hyperchaotic Lorenz system,a method of feedback compensation control based on quantum inspired PSO and wavelet neural network(PSOQI-Wavelet Neural Network)is proposed.Firstly,the quantum principle obtained from Quantum PSO(QPSO)has been combined with standard PSO to form a new hybrid algorithm called PSO with Quantum Infusion(PSO-QI).Then,the parameters of wavelet neural network were optimized with PSO-QI and feedback compensation control for hyperchaotic Lorenz system is implemented using optimized PSOQI-Wavelet Neural Network.The numerical simulation results showed that this method has better precision and can quickly track given hyperchaotic Lorenz system.展开更多
This paper develops a Quantum-inspired Genetic Algorithm(QGA) to find the sets of optimal parameters for the wind disturbance alleviation Flight Control System(FCS). To search the problem domain more evenly and unifor...This paper develops a Quantum-inspired Genetic Algorithm(QGA) to find the sets of optimal parameters for the wind disturbance alleviation Flight Control System(FCS). To search the problem domain more evenly and uniformly, the lattice rule based stratification method is used to create new chromosomes. The chromosomes are coded and updated according to quantuminspired strategies. A niching method is used to ensure every chromosome can converge to its corresponding local minimum in the optimization process. A parallel archive system is adopted to monitor the chromosomes on-line and save all potential feasible solutions in the optimization process. An adaptive search strategy is used to gradually adjust the search domain of each niche to finally approach the local minima. The solutions found by the QGA are compared with some other Multimodal Optimization(MO) algorithms and are tested on the FCS of the Boeing 747 to demonstrate the effectiveness of the proposed algorithm.展开更多
基金National Natural Science Foundation of China(No.11261001)。
文摘For the identification and control problem of hyperchaotic Lorenz system,a method of feedback compensation control based on quantum inspired PSO and wavelet neural network(PSOQI-Wavelet Neural Network)is proposed.Firstly,the quantum principle obtained from Quantum PSO(QPSO)has been combined with standard PSO to form a new hybrid algorithm called PSO with Quantum Infusion(PSO-QI).Then,the parameters of wavelet neural network were optimized with PSO-QI and feedback compensation control for hyperchaotic Lorenz system is implemented using optimized PSOQI-Wavelet Neural Network.The numerical simulation results showed that this method has better precision and can quickly track given hyperchaotic Lorenz system.
文摘This paper develops a Quantum-inspired Genetic Algorithm(QGA) to find the sets of optimal parameters for the wind disturbance alleviation Flight Control System(FCS). To search the problem domain more evenly and uniformly, the lattice rule based stratification method is used to create new chromosomes. The chromosomes are coded and updated according to quantuminspired strategies. A niching method is used to ensure every chromosome can converge to its corresponding local minimum in the optimization process. A parallel archive system is adopted to monitor the chromosomes on-line and save all potential feasible solutions in the optimization process. An adaptive search strategy is used to gradually adjust the search domain of each niche to finally approach the local minima. The solutions found by the QGA are compared with some other Multimodal Optimization(MO) algorithms and are tested on the FCS of the Boeing 747 to demonstrate the effectiveness of the proposed algorithm.