A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay...A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay rate. Thus the requirement on the quality factor of the cavities is greatly relaxed. Furthermore, the fidelity of our scheme is not affected by detection inefficiency and atomic decay. These advantages are important in view of experiment.展开更多
Based on the coupling of two distant three-level atoms in two separate optical cavities connected with two optical fibres, schemes on the generation of several two-qubit logic gates are discussed under the conditions ...Based on the coupling of two distant three-level atoms in two separate optical cavities connected with two optical fibres, schemes on the generation of several two-qubit logic gates are discussed under the conditions of △ = δ- 2v cos πk/2 〉〉 g/2 and v-g. Discussion and analysis of the fidelity, gate time and experimental setups show that our schemes are feasible with current optical cavity, atomic trap and optical fibre techniques. Moreover, the atom-cavityfibre coupling can be used to generate an N-qubit nonlocal entanglement and transfer quantum information among N distant atoms by arranging N atom cavity assemblages in a line and connecting each two adjacent cavities with two optical fibres.展开更多
A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but q...A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but quantum information does not transfer between the atoms and cavity field, and thus the cavity decay is negligible. The gate time does not rise with an increase in the number of qubits. With the choice of a smaller odd number l (related to atom-cavity coupling constants), the phase gate can be generated with a higher fidelity and a higher success probability in a shorter time (the gate time is much shorter than the atomic radiative lifetime and photon lifetime). When the number of qubits N exceeds certain small values, the fidelity and success probability rise slowly with an increase in the number of qubits N. When N→∞, the fidelity and success probability infinitely approach 1, but never exceed 1.展开更多
基金supported by the Doctoral Foundation of the Ministry of Education of China(Grant No 20070386002)
文摘A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay rate. Thus the requirement on the quality factor of the cavities is greatly relaxed. Furthermore, the fidelity of our scheme is not affected by detection inefficiency and atomic decay. These advantages are important in view of experiment.
文摘Based on the coupling of two distant three-level atoms in two separate optical cavities connected with two optical fibres, schemes on the generation of several two-qubit logic gates are discussed under the conditions of △ = δ- 2v cos πk/2 〉〉 g/2 and v-g. Discussion and analysis of the fidelity, gate time and experimental setups show that our schemes are feasible with current optical cavity, atomic trap and optical fibre techniques. Moreover, the atom-cavityfibre coupling can be used to generate an N-qubit nonlocal entanglement and transfer quantum information among N distant atoms by arranging N atom cavity assemblages in a line and connecting each two adjacent cavities with two optical fibres.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)the Science Foundation of Yanbian University, China (Grant No 2007-31)
文摘A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but quantum information does not transfer between the atoms and cavity field, and thus the cavity decay is negligible. The gate time does not rise with an increase in the number of qubits. With the choice of a smaller odd number l (related to atom-cavity coupling constants), the phase gate can be generated with a higher fidelity and a higher success probability in a shorter time (the gate time is much shorter than the atomic radiative lifetime and photon lifetime). When the number of qubits N exceeds certain small values, the fidelity and success probability rise slowly with an increase in the number of qubits N. When N→∞, the fidelity and success probability infinitely approach 1, but never exceed 1.