Fine control of the dynamics of a quantum system is the key element to perform quantum information processing and coherent manipulations for atomic and molecular systems. We propose a control protocol using a tangentp...Fine control of the dynamics of a quantum system is the key element to perform quantum information processing and coherent manipulations for atomic and molecular systems. We propose a control protocol using a tangentpulse driven model and demonstrate that it indicates a desirable design, i.e., of being both fast and accurate for population transfer. As opposed to other existing strategies, a remarkable character of the present scheme is that high velocity of the nonadiabatic evolution itself not only will not lead to unwanted transitions but also can suppress the error caused by the truncation of the driving pulse.展开更多
This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transm...This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transmitting multi-media frames to create observer-dependent realities. Key aspects include deriving frame rates, defining quantum reality, and establishing hierarchical observer structures. The model’s impact on quantum information theory and philosophical interpretations of reality are examined, with detailed discussions on information loss and recursive frame transmission in the appendices.展开更多
In the era of big data,traditional regression models cannot deal with uncertain big data efficiently and accurately.In order to make up for this deficiency,this paper proposes a quantum fuzzy regression model,which us...In the era of big data,traditional regression models cannot deal with uncertain big data efficiently and accurately.In order to make up for this deficiency,this paper proposes a quantum fuzzy regression model,which uses fuzzy theory to describe the uncertainty in big data sets and uses quantum computing to exponentially improve the efficiency of data set preprocessing and parameter estimation.In this paper,data envelopment analysis(DEA)is used to calculate the degree of importance of each data point.Meanwhile,Harrow,Hassidim and Lloyd(HHL)algorithm and quantum swap circuits are used to improve the efficiency of high-dimensional data matrix calculation.The application of the quantum fuzzy regression model to smallscale financial data proves that its accuracy is greatly improved compared with the quantum regression model.Moreover,due to the introduction of quantum computing,the speed of dealing with high-dimensional data matrix has an exponential improvement compared with the fuzzy regression model.The quantum fuzzy regression model proposed in this paper combines the advantages of fuzzy theory and quantum computing which can efficiently calculate high-dimensional data matrix and complete parameter estimation using quantum computing while retaining the uncertainty in big data.Thus,it is a new model for efficient and accurate big data processing in uncertain environments.展开更多
We investigate the two-mode quantum Rabi model(QRM)describing the interaction between a two-level atom and a two-mode cavity field.The quantum phase transitions are found when the ratioηof transition frequency of ato...We investigate the two-mode quantum Rabi model(QRM)describing the interaction between a two-level atom and a two-mode cavity field.The quantum phase transitions are found when the ratioηof transition frequency of atom to frequency of cavity field approaches infinity.We apply the Schrieffer–Wolff(SW)transformation to derive the low-energy effective Hamiltonian of the two-mode QRM,thus yielding the critical point and rich phase diagram of quantum phase transitions.The phase diagram consists of four regions:a normal phase,an electric superradiant phase,a magnetic superradiant phase and an electromagnetic superradiant phase.The quantum phase transition between the normal phase and the electric(magnetic)superradiant phase is of second order and associates with the breaking of the discrete Z_(2) symmetry.On the other hand,the phase transition between the electric superradiant phase and the magnetic superradiant phase is of first order and relates to the breaking of the continuous U(1)symmetry.Several important physical quantities,for example the excitation energy and average photon number in the four phases,are derived.We find that the excitation spectra exhibit the Nambu–Goldstone mode.We calculate analytically the higher-order correction and finite-frequency exponents of relevant quantities.To confirm the validity of the low-energy effective Hamiltonians analytically derived by us,the finite-frequency scaling relation of the averaged photon numbers is calculated by numerically diagonalizing the two-mode quantum Rabi Hamiltonian.展开更多
Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about pos...Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.展开更多
We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. S...We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.展开更多
The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has...The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.展开更多
Today, the advent of quantum computers and algorithms is calling into question the semantic security of symmetrical and asymmetrical cryptosystems. The security of objects connected to the network, which must provide ...Today, the advent of quantum computers and algorithms is calling into question the semantic security of symmetrical and asymmetrical cryptosystems. The security of objects connected to the network, which must provide a security service and protect the privacy of users by providing protection against attacks such as identity theft, denial of service, eavesdropping and unauthorised access to personal and sensitive data. It is therefore necessary to find a robust method of using the key that is effective in protecting and preventing data tampering. In this paper, we design and implement a security and data protection method using a key generated on the basis of electromagnetic wave propagation theories. Modelling and implementation of a data security and protection method using a key generated on the basis of electromagnetic wave propagation theories.展开更多
Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hami...Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hamiltonians on the IBM quantum computer. We developed quantum circuits to simulate these systems more efficiently for both closed and open boundary Ising models, with and without perturbations. We tested these various geometries of systems in both 1-D and 2-D space to mimic two real systems: magnetic materials and biological neural networks (BNNs). Our quantum model is more efficient than classical computers, which can struggle to simulate large, complex systems of particles.展开更多
Kitaev model has both Abelian and non-Abelian anyonic excitations. It can act as a starting point for topological quantum compu- tation. However, this model Hamiltonian is difficult to implement in natural condensed m...Kitaev model has both Abelian and non-Abelian anyonic excitations. It can act as a starting point for topological quantum compu- tation. However, this model Hamiltonian is difficult to implement in natural condensed matter systems. Here we propose a quantum simulation scheme by constructing the Kitaev model Hamiltonian in a lattice of coupled cavities with embedded A-type three-level atoms. In this scheme, several parameters are tunable, for example, via external laser fields. Importantly, our scheme is based on currently existing technologies and it provides a feasible way of realizing the Kitaev model to explore topological excitations.展开更多
We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckion...We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.展开更多
Paraconsistent logic (PL) is a non-classical logic that accepts contradiction in its foundations. It can be represented in the form of paraconsistent annotated logic with annotation of two values (PAL2v). When used to...Paraconsistent logic (PL) is a non-classical logic that accepts contradiction in its foundations. It can be represented in the form of paraconsistent annotated logic with annotation of two values (PAL2v). When used to model quantum phenomena, PAL2v is called paraquantum logic (PQL). In this work, the concept of PQL is applied to create a logical model presenting the fundamental principles of quantum mechanics that support particle-wave theory. This study uses the well-known Young’s double-slit experiment, wherein quantum phenomena appear when a monochromatic light beam passes through the two slits. We focused on a reference point located between the slits, where we observed the effects of two types of wave interferences in a region defined as a two-wave region (2W region). Considering that the effect in this 2W region is very similar to that studied by Huygens, we adopt a paraquantum logical model in which a particle (or quantum) is represented by two wave functions. The two wave functions result in four State Vectors (Ket, Bra,,) in the PQL Lattice that express the symmetry and the entanglement of Quantum Mechanics. The constructed model adapts well to the quantum phenomena, is strongly consistent, and can be considered as an innovative form of analysis in the field of quantum mechanics. Based on this model, we present in two parts (Part I and Part II) the comparative analysis of values found in SchrÖdinger’s equation and probabilistic models of wave-particle theory using Bonferroni inequality.展开更多
The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or mom...The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.展开更多
In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The...In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The results reveled that acetyl residues of KGM were bonded with water molecules in aqueous solutions. Increasing the hydrogen bond formation decreases the energy in acetyl system. The expect-valuation of the thermal state with respect to the Hamiltonian is negative. Hence, the total energy of konjac glucomnnan chain with the acetyl groups decreases, which indicates the increasing stability of konjac glucomnnan chain. Our approach could provide a new insight into the investigation on the stability of konjac glucomnnan chain.展开更多
A complete quantum mechanical model for GaAs?AlGaAs quantum well infrared photodetectors(QWIPs) is presented here. The model consisted of four parts: (1) Starting with the description of the electromagnetic field of t...A complete quantum mechanical model for GaAs?AlGaAs quantum well infrared photodetectors(QWIPs) is presented here. The model consisted of four parts: (1) Starting with the description of the electromagnetic field of the infrared radiation in the QWIP, effective component of the vector potential <| A z |> along the QWIP growth direction ( z axis) due to the optical diffraction grating was calculated. (2) From the wave transmissions and the occupations of the electronic states, it was discussed that the dark current in the QWIP is determined by the drift diffusion current of carriers thermally excited from the ground sublevel in the quantum well to extended states above the barrier. (3) The photocurrent was investigated by the optical transition (absorption coefficient between the ground state to excited states due to the nonzero <| A z |> ). (4) By studying the inter diffusion of the Al atoms across the GaAs?AlGaAs heterointerfaces,the mobility of the drift diffusion carriers in the excited states was calculated, so the measurement results of the dark current and photocurrent spectra can be explained theoretically. With the complete quantum mechanical descriptions of (1 4), QWIP device design and optimization are possible.展开更多
In this article,we focus on the short time strong solution to a compressible quantum hydrodynamic model.We establish a blow-up criterion about the solutions of the compressible quantum hydrodynamic model in terms of t...In this article,we focus on the short time strong solution to a compressible quantum hydrodynamic model.We establish a blow-up criterion about the solutions of the compressible quantum hydrodynamic model in terms of the gradient of the velocity,the second spacial derivative of the square root of the density,and the first order time derivative and first order spacial derivative of the square root of the density.展开更多
A general approach is proposed to the quantum Rabi model and its several variants within the extended coherent states.The solutions to all these models including the anisotropy and the nonlinear Stark coupling are the...A general approach is proposed to the quantum Rabi model and its several variants within the extended coherent states.The solutions to all these models including the anisotropy and the nonlinear Stark coupling are then obtained in an unified way.The essential characteristics such as the possible first-order phase transition can be detected analytically.This approach can be easily applied to the recent experiments with various tunable parameters without much additional effort,so it should be very helpful to the analysis of the experimental data.展开更多
We investigate the decoy state quantum key distribution via the atmosphere channels. We consider the efficient decoy state method with one-signal state and two-decoy states. Our results show that the decoy state metho...We investigate the decoy state quantum key distribution via the atmosphere channels. We consider the efficient decoy state method with one-signal state and two-decoy states. Our results show that the decoy state method works even in the channels with fluctuating transmittance. Nevertheless, the key generation rate will be dra-matically decreased by atmosphere turbulence, which sheds more light on the characterization of atmosphere turbulence in realistic free-space based quantum key distributions.展开更多
This paper develops a QKD (quantum key distribution)-based queueing model to investigate the data delay on QKD link and network, especially that based on trusted relays. It shows the mean packet delay performance of...This paper develops a QKD (quantum key distribution)-based queueing model to investigate the data delay on QKD link and network, especially that based on trusted relays. It shows the mean packet delay performance of the QKD system. Furthermore, it proposes a key buffering policy which could effectively improve the delay performance in practice. The results will be helpful for quality of service in practical QKD systems.展开更多
Quantum correlation dynamics in an anisotropic Heisenberg XYZ model under decoherence is investigated by making use of concurrence C and quantum discord (QD). Firstly, we show that both the concurrence and QD exhibi...Quantum correlation dynamics in an anisotropic Heisenberg XYZ model under decoherence is investigated by making use of concurrence C and quantum discord (QD). Firstly, we show that both the concurrence and QD exhibit oscillation with time whereas a remarkable difference between them is presented: there is an "entanglement intermittently sudden death" phenomenon in the concurrence but not in the QD, which is valid for all the initial states of this system. Also, the interval time of entanglement sudden death is found to be strongly dependent on the initial states, the inhomogeneous magnetic field b and the anisotropic parameter △. Then, it implies that the steady concurrence and QD can be obtained in the long-time limit, which means that the environmental decoherence cannot entirely destroy the quantum correlation, the variation of the uniform magnetic field B and the anisotropic parameter can change the magnitude of the steady concurrence and QD evidently whereas the parameter b cannot. In addition, based on the analysis of the steady concurrence and QD with t →∞, we give the reason why the magnitude of the steady concurrence and QD is so complicated with the change of the parameters B and .4, whereas the parameter b is independent of the steady concurrence and QD.展开更多
文摘Fine control of the dynamics of a quantum system is the key element to perform quantum information processing and coherent manipulations for atomic and molecular systems. We propose a control protocol using a tangentpulse driven model and demonstrate that it indicates a desirable design, i.e., of being both fast and accurate for population transfer. As opposed to other existing strategies, a remarkable character of the present scheme is that high velocity of the nonadiabatic evolution itself not only will not lead to unwanted transitions but also can suppress the error caused by the truncation of the driving pulse.
文摘This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transmitting multi-media frames to create observer-dependent realities. Key aspects include deriving frame rates, defining quantum reality, and establishing hierarchical observer structures. The model’s impact on quantum information theory and philosophical interpretations of reality are examined, with detailed discussions on information loss and recursive frame transmission in the appendices.
基金This work is supported by the NationalNatural Science Foundation of China(No.62076042)the Key Research and Development Project of Sichuan Province(Nos.2021YFSY0012,2020YFG0307,2021YFG0332)+3 种基金the Science and Technology Innovation Project of Sichuan(No.2020017)the Key Research and Development Project of Chengdu(No.2019-YF05-02028-GX)the Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643).
文摘In the era of big data,traditional regression models cannot deal with uncertain big data efficiently and accurately.In order to make up for this deficiency,this paper proposes a quantum fuzzy regression model,which uses fuzzy theory to describe the uncertainty in big data sets and uses quantum computing to exponentially improve the efficiency of data set preprocessing and parameter estimation.In this paper,data envelopment analysis(DEA)is used to calculate the degree of importance of each data point.Meanwhile,Harrow,Hassidim and Lloyd(HHL)algorithm and quantum swap circuits are used to improve the efficiency of high-dimensional data matrix calculation.The application of the quantum fuzzy regression model to smallscale financial data proves that its accuracy is greatly improved compared with the quantum regression model.Moreover,due to the introduction of quantum computing,the speed of dealing with high-dimensional data matrix has an exponential improvement compared with the fuzzy regression model.The quantum fuzzy regression model proposed in this paper combines the advantages of fuzzy theory and quantum computing which can efficiently calculate high-dimensional data matrix and complete parameter estimation using quantum computing while retaining the uncertainty in big data.Thus,it is a new model for efficient and accurate big data processing in uncertain environments.
基金supported by the National Natural Science Foundation of China(Grant No.12135003)。
文摘We investigate the two-mode quantum Rabi model(QRM)describing the interaction between a two-level atom and a two-mode cavity field.The quantum phase transitions are found when the ratioηof transition frequency of atom to frequency of cavity field approaches infinity.We apply the Schrieffer–Wolff(SW)transformation to derive the low-energy effective Hamiltonian of the two-mode QRM,thus yielding the critical point and rich phase diagram of quantum phase transitions.The phase diagram consists of four regions:a normal phase,an electric superradiant phase,a magnetic superradiant phase and an electromagnetic superradiant phase.The quantum phase transition between the normal phase and the electric(magnetic)superradiant phase is of second order and associates with the breaking of the discrete Z_(2) symmetry.On the other hand,the phase transition between the electric superradiant phase and the magnetic superradiant phase is of first order and relates to the breaking of the continuous U(1)symmetry.Several important physical quantities,for example the excitation energy and average photon number in the four phases,are derived.We find that the excitation spectra exhibit the Nambu–Goldstone mode.We calculate analytically the higher-order correction and finite-frequency exponents of relevant quantities.To confirm the validity of the low-energy effective Hamiltonians analytically derived by us,the finite-frequency scaling relation of the averaged photon numbers is calculated by numerically diagonalizing the two-mode quantum Rabi Hamiltonian.
文摘Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.
文摘We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.
文摘The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.
文摘Today, the advent of quantum computers and algorithms is calling into question the semantic security of symmetrical and asymmetrical cryptosystems. The security of objects connected to the network, which must provide a security service and protect the privacy of users by providing protection against attacks such as identity theft, denial of service, eavesdropping and unauthorised access to personal and sensitive data. It is therefore necessary to find a robust method of using the key that is effective in protecting and preventing data tampering. In this paper, we design and implement a security and data protection method using a key generated on the basis of electromagnetic wave propagation theories. Modelling and implementation of a data security and protection method using a key generated on the basis of electromagnetic wave propagation theories.
文摘Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hamiltonians on the IBM quantum computer. We developed quantum circuits to simulate these systems more efficiently for both closed and open boundary Ising models, with and without perturbations. We tested these various geometries of systems in both 1-D and 2-D space to mimic two real systems: magnetic materials and biological neural networks (BNNs). Our quantum model is more efficient than classical computers, which can struggle to simulate large, complex systems of particles.
基金supported by the National Basic Research Program of China(Grant No. 2009CB929302)the National Natural Science Foundation of China (Grant No. 91121015)+1 种基金the Ministry of Education of China (GrantNo. B06011)the U.S. National Science Foundation (Grant No. PHY-0925174)
文摘Kitaev model has both Abelian and non-Abelian anyonic excitations. It can act as a starting point for topological quantum compu- tation. However, this model Hamiltonian is difficult to implement in natural condensed matter systems. Here we propose a quantum simulation scheme by constructing the Kitaev model Hamiltonian in a lattice of coupled cavities with embedded A-type three-level atoms. In this scheme, several parameters are tunable, for example, via external laser fields. Importantly, our scheme is based on currently existing technologies and it provides a feasible way of realizing the Kitaev model to explore topological excitations.
文摘We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.
文摘Paraconsistent logic (PL) is a non-classical logic that accepts contradiction in its foundations. It can be represented in the form of paraconsistent annotated logic with annotation of two values (PAL2v). When used to model quantum phenomena, PAL2v is called paraquantum logic (PQL). In this work, the concept of PQL is applied to create a logical model presenting the fundamental principles of quantum mechanics that support particle-wave theory. This study uses the well-known Young’s double-slit experiment, wherein quantum phenomena appear when a monochromatic light beam passes through the two slits. We focused on a reference point located between the slits, where we observed the effects of two types of wave interferences in a region defined as a two-wave region (2W region). Considering that the effect in this 2W region is very similar to that studied by Huygens, we adopt a paraquantum logical model in which a particle (or quantum) is represented by two wave functions. The two wave functions result in four State Vectors (Ket, Bra,,) in the PQL Lattice that express the symmetry and the entanglement of Quantum Mechanics. The constructed model adapts well to the quantum phenomena, is strongly consistent, and can be considered as an innovative form of analysis in the field of quantum mechanics. Based on this model, we present in two parts (Part I and Part II) the comparative analysis of values found in SchrÖdinger’s equation and probabilistic models of wave-particle theory using Bonferroni inequality.
文摘The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.
基金supported by the Natural Science Foundation of China(31271837 and 31471704)
文摘In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The results reveled that acetyl residues of KGM were bonded with water molecules in aqueous solutions. Increasing the hydrogen bond formation decreases the energy in acetyl system. The expect-valuation of the thermal state with respect to the Hamiltonian is negative. Hence, the total energy of konjac glucomnnan chain with the acetyl groups decreases, which indicates the increasing stability of konjac glucomnnan chain. Our approach could provide a new insight into the investigation on the stability of konjac glucomnnan chain.
文摘A complete quantum mechanical model for GaAs?AlGaAs quantum well infrared photodetectors(QWIPs) is presented here. The model consisted of four parts: (1) Starting with the description of the electromagnetic field of the infrared radiation in the QWIP, effective component of the vector potential <| A z |> along the QWIP growth direction ( z axis) due to the optical diffraction grating was calculated. (2) From the wave transmissions and the occupations of the electronic states, it was discussed that the dark current in the QWIP is determined by the drift diffusion current of carriers thermally excited from the ground sublevel in the quantum well to extended states above the barrier. (3) The photocurrent was investigated by the optical transition (absorption coefficient between the ground state to excited states due to the nonzero <| A z |> ). (4) By studying the inter diffusion of the Al atoms across the GaAs?AlGaAs heterointerfaces,the mobility of the drift diffusion carriers in the excited states was calculated, so the measurement results of the dark current and photocurrent spectra can be explained theoretically. With the complete quantum mechanical descriptions of (1 4), QWIP device design and optimization are possible.
基金The first author is supported by the National Natural Science Foundation of China(11801107)the second author is supported by the National Natural Science Foundation of China(11731014).
文摘In this article,we focus on the short time strong solution to a compressible quantum hydrodynamic model.We establish a blow-up criterion about the solutions of the compressible quantum hydrodynamic model in terms of the gradient of the velocity,the second spacial derivative of the square root of the density,and the first order time derivative and first order spacial derivative of the square root of the density.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834005 and 11674285).
文摘A general approach is proposed to the quantum Rabi model and its several variants within the extended coherent states.The solutions to all these models including the anisotropy and the nonlinear Stark coupling are then obtained in an unified way.The essential characteristics such as the possible first-order phase transition can be detected analytically.This approach can be easily applied to the recent experiments with various tunable parameters without much additional effort,so it should be very helpful to the analysis of the experimental data.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574400,U1304613,11204197,11204379 and 11074244the National Basic Research Program of China under Grant No 2011CBA00200the Doctor Foundation of the Ministry of Education of China under Grant No 20113402110059
文摘We investigate the decoy state quantum key distribution via the atmosphere channels. We consider the efficient decoy state method with one-signal state and two-decoy states. Our results show that the decoy state method works even in the channels with fluctuating transmittance. Nevertheless, the key generation rate will be dra-matically decreased by atmosphere turbulence, which sheds more light on the characterization of atmosphere turbulence in realistic free-space based quantum key distributions.
基金Project supported by National Fundamental Research Program of China (Grant No 2006CB921900)National Natural Science Foundation of China (Grant Nos 60537020 and 60621064)Knowledge Innovation Project of Chinese Academy of Sciences
文摘This paper develops a QKD (quantum key distribution)-based queueing model to investigate the data delay on QKD link and network, especially that based on trusted relays. It shows the mean packet delay performance of the QKD system. Furthermore, it proposes a key buffering policy which could effectively improve the delay performance in practice. The results will be helpful for quality of service in practical QKD systems.
基金Project supported by the Natural Science Foundation for Young Scientists of Shanxi Province,China(Grant No.2012021003-3)the Special Funds of the National Natural Science Foundation of China(Grant No.11247247)
文摘Quantum correlation dynamics in an anisotropic Heisenberg XYZ model under decoherence is investigated by making use of concurrence C and quantum discord (QD). Firstly, we show that both the concurrence and QD exhibit oscillation with time whereas a remarkable difference between them is presented: there is an "entanglement intermittently sudden death" phenomenon in the concurrence but not in the QD, which is valid for all the initial states of this system. Also, the interval time of entanglement sudden death is found to be strongly dependent on the initial states, the inhomogeneous magnetic field b and the anisotropic parameter △. Then, it implies that the steady concurrence and QD can be obtained in the long-time limit, which means that the environmental decoherence cannot entirely destroy the quantum correlation, the variation of the uniform magnetic field B and the anisotropic parameter can change the magnitude of the steady concurrence and QD evidently whereas the parameter b cannot. In addition, based on the analysis of the steady concurrence and QD with t →∞, we give the reason why the magnitude of the steady concurrence and QD is so complicated with the change of the parameters B and .4, whereas the parameter b is independent of the steady concurrence and QD.