As a special quantum node in a quantum network,the quantum router plays an important role in storing and transferring quantum information.In this paper,we propose a quantum router scheme based on asymmetric intercavit...As a special quantum node in a quantum network,the quantum router plays an important role in storing and transferring quantum information.In this paper,we propose a quantum router scheme based on asymmetric intercavity couplings and a three-levelΛ-type atomic system.This scheme implements the quantum routing capability very well.It can perfectly transfer quantum information from one quantum channel to another.Compared with the previous quantum routing scheme,our proposed scheme can achieve the transfer rate of single photons from one quantum channel to another quantum channel reaching 100%,the high transfer rate is located in the almost quadrant regions with negative values of the two variablesλa andλb,and their maximum values Tu^b+Td^b=1 emerge in the center pointλa=λb=-1.Therefore,it is possibly feasible to efficiently enhance the routing capability of the single photons between two channels by adjusting the inter-resonator couplings,and the asymmetric intercavity coupling provides a new method for achieving high-fidelity quantum routers.展开更多
In this paper, we propose a single-photon router via the use of a four-level atom system coupled with two one-dimensional coupled-resonator waveguides. A single photon can be directed from one quantum channel into ano...In this paper, we propose a single-photon router via the use of a four-level atom system coupled with two one-dimensional coupled-resonator waveguides. A single photon can be directed from one quantum channel into another by atomic spontaneous emission. The coherent resonance and the photonic bound states lead to the perfect reflection appearing in the incident channel.The fidelity of the atom is related to the magnitude of the coupling strength and can reach unit when the coupling strength matches g_a = g_b. This shows that the transfer of a single photon into another quantum channel has no influence on the fidelity at special points.展开更多
基金supported by the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province。
文摘As a special quantum node in a quantum network,the quantum router plays an important role in storing and transferring quantum information.In this paper,we propose a quantum router scheme based on asymmetric intercavity couplings and a three-levelΛ-type atomic system.This scheme implements the quantum routing capability very well.It can perfectly transfer quantum information from one quantum channel to another.Compared with the previous quantum routing scheme,our proposed scheme can achieve the transfer rate of single photons from one quantum channel to another quantum channel reaching 100%,the high transfer rate is located in the almost quadrant regions with negative values of the two variablesλa andλb,and their maximum values Tu^b+Td^b=1 emerge in the center pointλa=λb=-1.Therefore,it is possibly feasible to efficiently enhance the routing capability of the single photons between two channels by adjusting the inter-resonator couplings,and the asymmetric intercavity coupling provides a new method for achieving high-fidelity quantum routers.
基金supported by the National Natural Science Foundation of China(Grant Nos.11674253,61471356,and 11365009)
文摘In this paper, we propose a single-photon router via the use of a four-level atom system coupled with two one-dimensional coupled-resonator waveguides. A single photon can be directed from one quantum channel into another by atomic spontaneous emission. The coherent resonance and the photonic bound states lead to the perfect reflection appearing in the incident channel.The fidelity of the atom is related to the magnitude of the coupling strength and can reach unit when the coupling strength matches g_a = g_b. This shows that the transfer of a single photon into another quantum channel has no influence on the fidelity at special points.