We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid–optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred...We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid–optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred to the microwave photon, then the optical photon successively, which afterwards is transmitted to the remote node by cavity leaking,and finally the quantum state is transferred to the remote superconducting qubit. The high efficiency of the state transfer is achieved by controllable Gaussian pulses sequence and numerically demonstrated with theoretically feasible parameters.Our scheme has the potential to implement unified quantum computing–communication–computing, and high fidelity of the microwave–optics–microwave transfer process of the quantum state.展开更多
The reversible transfer of unknown quantum states between light and matter is essential for constructing large-scale quantum networks. Over the last decade, various physical systems have been proposed to realize such ...The reversible transfer of unknown quantum states between light and matter is essential for constructing large-scale quantum networks. Over the last decade, various physical systems have been proposed to realize such quantum memory for light. The solid-state quantum memory based on rare-earth-ion-doped solids has the advantages of a reduced setup complexity and high robustness for scalable application. We describe the methods used to spectrally prepare the quantum memory and release the photonic excitation on-demand. We will review the state of the art experiments and discuss the perspective applications of this particular system in both quantum information science and fundamental tests of quantum physics.展开更多
To ensure the infiltration of spiro-OMeTAD into the quantum dot-sensitized photoanode and to consider the limit of the hole diffusion length in the spiro-OMeTAD layer, a rutile TiO2 nanorod array with a length of 200 ...To ensure the infiltration of spiro-OMeTAD into the quantum dot-sensitized photoanode and to consider the limit of the hole diffusion length in the spiro-OMeTAD layer, a rutile TiO2 nanorod array with a length of 200 nm, a diameter of 20 nm and an areal density of 720 ram 2 was successfully prepared using a hydrothermal method with an aqueous-grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 ℃ for 75 min. PbS quantum dots were deposited by a spin coating-assisted successive ionic layer adsorption and reaction (spin-SILAR), and all solid-state PbS quantum dot-sensitized TiO2 nanorod array solar cells were fabricated using spiro-OMeTAD as electrolytes. The results revealed that the average crystal size of PbS quantum dots was -78 nm using Pb(NO3)2 as the lead source and remain unchanged with the increase of the number of spin-SILAR cycles. The all solid-state PbS quantum dot-sensitized TiO2 nanorod array solar cells with spin-SILAR cycle numbers of 20, 30 and 40 achieved the photoelectric conversion efficiencies of 3.74%, 4.12% and 3.11%, respectively, under AM 1.5 G illumination (100 mW/cm2).展开更多
The quantum phase transition from the Mott insulator to the superfluid phases of the bosonic atoms trapped in an optical lattice, in which the on-site interaction carl be tuned by a Feshbach resonance, is investigated...The quantum phase transition from the Mott insulator to the superfluid phases of the bosonic atoms trapped in an optical lattice, in which the on-site interaction carl be tuned by a Feshbach resonance, is investigated by a variational approach within mean-field theory. We derive an extended Bos^Hubbard model to describe this ultracold atomic system. By theoretical calculation and analysis, the phase diagram is shown clearly, and we find an exciting and novel phenomenon that is the appearance of the Mort insulator-sea (MI-sea). Meanwhile, the experimental feasibility of observing the MI-sea is discussed by analyzing the published data related to the Fashbaeh resonance at present. Finally, the potential application of the MI-sea for quantum information processing and quantum computation is also discussed in detail展开更多
The inability of a single-gap solar cell to absorb energies less than the band-gap energy is one of the intrinsic loss mechanisms which limit the conversion efficiency in photovoltaic devices. New approaches to “ultr...The inability of a single-gap solar cell to absorb energies less than the band-gap energy is one of the intrinsic loss mechanisms which limit the conversion efficiency in photovoltaic devices. New approaches to “ultra-high” efficiency solar cells include devices such as multiple quantum wells (QW) and superlattices (SL) systems in the intrinsic region of a p-i-n cell of wider band-gap energy (barrier or host) semiconductor. These configurations are intended to extend the absorption band beyond the single gap host cell semiconductor. A theoretical model has been developed to study the performance of the strain-balanced GaAsP/InGaAs/GaAs MQWSC, and GaAs/GaInNAs MQWSC or SLSC. Our results show that conversion efficiencies can be reached which have never been obtained before for a single-junction solar cell.展开更多
The method for preparing a new solid lubrication system of nano S W S was presented. The microstructure of the S W S nano cluster was investigated using TEM and XRD. The system is a mixture clusters of both monocrysta...The method for preparing a new solid lubrication system of nano S W S was presented. The microstructure of the S W S nano cluster was investigated using TEM and XRD. The system is a mixture clusters of both monocrystal and polycrystal of layered hexagonal structure with one tungsten atom linking with two sulphur atoms, and the week Van der Waals’ force bonding together the different layers. The changes of electronic structure were studied with XPS. The hybridization of different electronic shell orbitals of the sulphur atom in the nano cluster is regarded as the quantum size effect. The clusters are found to be of a closed spherical structure without any dangling bond. [展开更多
Instead of praises from colleagues,the claim of observation of metallic hydrogen at 495 GPa by Dias and Silvera met much skepticism,and grew into a public debate at the International Conference on High-Pressure Scienc...Instead of praises from colleagues,the claim of observation of metallic hydrogen at 495 GPa by Dias and Silvera met much skepticism,and grew into a public debate at the International Conference on High-Pressure Science and Technology,AIRAPT26.We briefly review this debate,and extend the topic to show that this disputation could be an opportunity to benefit the whole high pressure community.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11305021)the Fundamental Research Funds for the Central Universities of China(Grants Nos.3132017072 and 3132015149)
文摘We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid–optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred to the microwave photon, then the optical photon successively, which afterwards is transmitted to the remote node by cavity leaking,and finally the quantum state is transferred to the remote superconducting qubit. The high efficiency of the state transfer is achieved by controllable Gaussian pulses sequence and numerically demonstrated with theoretically feasible parameters.Our scheme has the potential to implement unified quantum computing–communication–computing, and high fidelity of the microwave–optics–microwave transfer process of the quantum state.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304100)the National Natural Science Foundation of China(Grant Nos.61327901,11774331,11774335,11504362,11325419,and 11654002)+1 种基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH003)the Fundamental Research Funds for the Central Universities,China(Grant Nos.WK2470000023 and WK2470000026)
文摘The reversible transfer of unknown quantum states between light and matter is essential for constructing large-scale quantum networks. Over the last decade, various physical systems have been proposed to realize such quantum memory for light. The solid-state quantum memory based on rare-earth-ion-doped solids has the advantages of a reduced setup complexity and high robustness for scalable application. We describe the methods used to spectrally prepare the quantum memory and release the photonic excitation on-demand. We will review the state of the art experiments and discuss the perspective applications of this particular system in both quantum information science and fundamental tests of quantum physics.
基金supported by the National Natural Science Foundation of China(51272061,51472071)
文摘To ensure the infiltration of spiro-OMeTAD into the quantum dot-sensitized photoanode and to consider the limit of the hole diffusion length in the spiro-OMeTAD layer, a rutile TiO2 nanorod array with a length of 200 nm, a diameter of 20 nm and an areal density of 720 ram 2 was successfully prepared using a hydrothermal method with an aqueous-grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 ℃ for 75 min. PbS quantum dots were deposited by a spin coating-assisted successive ionic layer adsorption and reaction (spin-SILAR), and all solid-state PbS quantum dot-sensitized TiO2 nanorod array solar cells were fabricated using spiro-OMeTAD as electrolytes. The results revealed that the average crystal size of PbS quantum dots was -78 nm using Pb(NO3)2 as the lead source and remain unchanged with the increase of the number of spin-SILAR cycles. The all solid-state PbS quantum dot-sensitized TiO2 nanorod array solar cells with spin-SILAR cycle numbers of 20, 30 and 40 achieved the photoelectric conversion efficiencies of 3.74%, 4.12% and 3.11%, respectively, under AM 1.5 G illumination (100 mW/cm2).
基金Supported by the National Basic Research Program of China under Grant No 2005CB724500, the National Natural Science Foundation of China under No 140874009, and the Open Research Found of State Key Laboratory of Precision Spectroscopy (East China Normal University).
文摘The quantum phase transition from the Mott insulator to the superfluid phases of the bosonic atoms trapped in an optical lattice, in which the on-site interaction carl be tuned by a Feshbach resonance, is investigated by a variational approach within mean-field theory. We derive an extended Bos^Hubbard model to describe this ultracold atomic system. By theoretical calculation and analysis, the phase diagram is shown clearly, and we find an exciting and novel phenomenon that is the appearance of the Mort insulator-sea (MI-sea). Meanwhile, the experimental feasibility of observing the MI-sea is discussed by analyzing the published data related to the Fashbaeh resonance at present. Finally, the potential application of the MI-sea for quantum information processing and quantum computation is also discussed in detail
文摘The inability of a single-gap solar cell to absorb energies less than the band-gap energy is one of the intrinsic loss mechanisms which limit the conversion efficiency in photovoltaic devices. New approaches to “ultra-high” efficiency solar cells include devices such as multiple quantum wells (QW) and superlattices (SL) systems in the intrinsic region of a p-i-n cell of wider band-gap energy (barrier or host) semiconductor. These configurations are intended to extend the absorption band beyond the single gap host cell semiconductor. A theoretical model has been developed to study the performance of the strain-balanced GaAsP/InGaAs/GaAs MQWSC, and GaAs/GaInNAs MQWSC or SLSC. Our results show that conversion efficiencies can be reached which have never been obtained before for a single-junction solar cell.
文摘The method for preparing a new solid lubrication system of nano S W S was presented. The microstructure of the S W S nano cluster was investigated using TEM and XRD. The system is a mixture clusters of both monocrystal and polycrystal of layered hexagonal structure with one tungsten atom linking with two sulphur atoms, and the week Van der Waals’ force bonding together the different layers. The changes of electronic structure were studied with XPS. The hybridization of different electronic shell orbitals of the sulphur atom in the nano cluster is regarded as the quantum size effect. The clusters are found to be of a closed spherical structure without any dangling bond. [
基金The author acknowledges support from the National Natural Science Foundation of China under Grant Nos.11672274 and 11274281the NSAF under Grant No.U1730248.
文摘Instead of praises from colleagues,the claim of observation of metallic hydrogen at 495 GPa by Dias and Silvera met much skepticism,and grew into a public debate at the International Conference on High-Pressure Science and Technology,AIRAPT26.We briefly review this debate,and extend the topic to show that this disputation could be an opportunity to benefit the whole high pressure community.