The transport properties of a Dirac semimet^l quantum wire with two side gates are theoretically studied by adopting the lattice Green function method. It is found that a residual conductance quantum contributed from ...The transport properties of a Dirac semimet^l quantum wire with two side gates are theoretically studied by adopting the lattice Green function method. It is found that a residual conductance quantum contributed from the surface states can be switched on or off by tuning the electron energy or the side gates voltage. This ideal switching effect for the surface Dirac electron results from the transversal quantum confinement of the quantum wire in combination with the electrostatic potential induced by the side gates. These findings may provide useful guidance for designing all-electrical topological nanoelectronic devices.展开更多
The spin-polarized linear conductance spectrum and current–voltage characteristics in a four-quantum-dot ring embodied into Aharonov–Bohm (AB) interferometer are investigated theoretically by considering a local R...The spin-polarized linear conductance spectrum and current–voltage characteristics in a four-quantum-dot ring embodied into Aharonov–Bohm (AB) interferometer are investigated theoretically by considering a local Rashba spin–orbit interaction. It shows that the spin-polarized linear conductance and the corresponding spin polarization are each a function of magnetic flux phase at zero bias voltage with a period of 2π, and that Hubbard U cannot influence the electron transport properties in this case. When adjusting appropriately the structural parameter of inter-dot coupling and dot-lead coupling strength, the electronic spin polarization can reach a maximum value. Furthermore, by adjusting the bias voltages applied to the leads, the spin-up and spin-down currents move in opposite directions and pure spin current exists in the configuration space in appropriate situations. Based on the numerical results, such a model can be applied to the design of a spin filter device.展开更多
The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the ...The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the TR symmetry. The possibility to realize a robust QSH effect by artificial removal of the TR symmetry of the edge states is explored. As a useful tool to characterize topological phases without the TR symmetry, the spin-Chern number theory is introduced.展开更多
We investigate full counting statistics of quantum heat transfer in a collective-qubit system constructed by multiqubits interacting with two thermal baths. The nonequilibrium polaron-transformed Redfield approach emb...We investigate full counting statistics of quantum heat transfer in a collective-qubit system constructed by multiqubits interacting with two thermal baths. The nonequilibrium polaron-transformed Redfield approach embedded with an auxiliary counting field is applied to obtain the steady state heat current and fluctuations, which enables us to study the impact of the qubit–bath interaction in a wide regime. The heat current, current noise, and skewness are all found to clearly unify the limiting results in the weak and strong couplings. Moreover, the superradiant heat transfer is clarified as a system-size-dependent effect, and large number of qubits dramatically suppress the nonequilibrium superradiant signature.展开更多
We investigate the non-equilibrium electron transport properties of double-barrier AlGaAs/GaAs/AlGaAs resonant- tunnelling devices in nonlinear bias using the time-dependent simulation technique. It is found that the ...We investigate the non-equilibrium electron transport properties of double-barrier AlGaAs/GaAs/AlGaAs resonant- tunnelling devices in nonlinear bias using the time-dependent simulation technique. It is found that the bias step of the external bias voltage applied on the device has an important effect on the final current-voltage (I - V) curves. The results show that different bias step applied on the device can change the bistability, hysteresis and current plateau structure of the I - V curve. The current plateau occurs only in the case of small bias step. As the bias step increases, this plateau structure disappears.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11264019,11364019 and 11464011the Natural Science Foundation of Jiangxi Province under Grant No 20151BAB202007
文摘The transport properties of a Dirac semimet^l quantum wire with two side gates are theoretically studied by adopting the lattice Green function method. It is found that a residual conductance quantum contributed from the surface states can be switched on or off by tuning the electron energy or the side gates voltage. This ideal switching effect for the surface Dirac electron results from the transversal quantum confinement of the quantum wire in combination with the electrostatic potential induced by the side gates. These findings may provide useful guidance for designing all-electrical topological nanoelectronic devices.
基金Project supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 201202085)the National Natural Science Foundation of China(Grant No. 11004138)+1 种基金the Excellent Young Scientists Fund of Liaoning Provence, China (Grant No. LJQ2011020)the Young Scientists Fund of Shenyang Ligong University (Grant No. 2011QN-04-11)
文摘The spin-polarized linear conductance spectrum and current–voltage characteristics in a four-quantum-dot ring embodied into Aharonov–Bohm (AB) interferometer are investigated theoretically by considering a local Rashba spin–orbit interaction. It shows that the spin-polarized linear conductance and the corresponding spin polarization are each a function of magnetic flux phase at zero bias voltage with a period of 2π, and that Hubbard U cannot influence the electron transport properties in this case. When adjusting appropriately the structural parameter of inter-dot coupling and dot-lead coupling strength, the electronic spin polarization can reach a maximum value. Furthermore, by adjusting the bias voltages applied to the leads, the spin-up and spin-down currents move in opposite directions and pure spin current exists in the configuration space in appropriate situations. Based on the numerical results, such a model can be applied to the design of a spin filter device.
基金supported by the National Basic Research Program of China (Grant Nos. 2009CB929504,2011CB922103,and 2010CB923400)the National Natural Science Foundation of China (Grant Nos. 11225420,11074110,11174125,11074109,and 91021003)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China,the US NSF (Grant Nos. DMR-0906816 and DMR-1205734)Princeton MRSEC (Grant No. DMR-0819860)
文摘The quantum spin Hall (QSH) effect is considered to be unstable to perturbations violating the time-reversal (TR) symmetry. We review some recent developments in the search of the QSH effect in the absence of the TR symmetry. The possibility to realize a robust QSH effect by artificial removal of the TR symmetry of the edge states is explored. As a useful tool to characterize topological phases without the TR symmetry, the spin-Chern number theory is introduced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874011 and 11704093)
文摘We investigate full counting statistics of quantum heat transfer in a collective-qubit system constructed by multiqubits interacting with two thermal baths. The nonequilibrium polaron-transformed Redfield approach embedded with an auxiliary counting field is applied to obtain the steady state heat current and fluctuations, which enables us to study the impact of the qubit–bath interaction in a wide regime. The heat current, current noise, and skewness are all found to clearly unify the limiting results in the weak and strong couplings. Moreover, the superradiant heat transfer is clarified as a system-size-dependent effect, and large number of qubits dramatically suppress the nonequilibrium superradiant signature.
基金Supported by the National Natural Science Foundation of China under Grant No 10404022, and the National Basic Research Programme of China under Grant No G2000067107.
文摘We investigate the non-equilibrium electron transport properties of double-barrier AlGaAs/GaAs/AlGaAs resonant- tunnelling devices in nonlinear bias using the time-dependent simulation technique. It is found that the bias step of the external bias voltage applied on the device has an important effect on the final current-voltage (I - V) curves. The results show that different bias step applied on the device can change the bistability, hysteresis and current plateau structure of the I - V curve. The current plateau occurs only in the case of small bias step. As the bias step increases, this plateau structure disappears.