Recently Xia and Song [Phys. Lett. A 364 (2007) 117] have proposed a controlled quantum secure direct communication (CQSDC) protocol. They claimed that in their protocol only with the help of the controller Charli...Recently Xia and Song [Phys. Lett. A 364 (2007) 117] have proposed a controlled quantum secure direct communication (CQSDC) protocol. They claimed that in their protocol only with the help of the controller Charlie, the receiver Alice can successfully extract the secret message from the sender Bob. In this letter, first we will show that within their protocol the controller Charlie's role could have been excluded if it were not for their unreasonable design. We then revise the Xia-Song CQSDC protocol such that its original advantages are reta/ned and the CQSDC can be really realized.展开更多
We present a scheme for quantum superdense coding with hyperentanglement, in which the sender can transfer four bits of classical information by sending only one photon. The important device in the scheme is the hyper...We present a scheme for quantum superdense coding with hyperentanglement, in which the sender can transfer four bits of classical information by sending only one photon. The important device in the scheme is the hyperentangled Bell-state analyzer in both polarization and frequency degrees of freedom, which is also constructed in the paper by using a quantum nondemolition detector assisted by cross-Kerr nonlinearity. Our scheme can transfer more informationwith less resources than the existing schemes and is nearly deterministic and nondestructive.展开更多
Quantum superdense coding (QSC) is an example of how entanglement can be used to minimize the number of carriers of classical information. This paper proposes two schemes for implementing QSC by means of cavity assi...Quantum superdense coding (QSC) is an example of how entanglement can be used to minimize the number of carriers of classical information. This paper proposes two schemes for implementing QSC by means of cavity assisted interactions with single-photon pulses. The schemes are insensitive to the cavity decay and the thermal field, thus it might be realizable based on the current cavity QED techniques.展开更多
基金The project supported by the Program of New Century Excellent Talents at the University of China under Grant No.NCET-06-0554National Natural Science Foundation of China under Grant Nos.60677001 and 10747146+3 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806the Natural Science Foundation of Hubei Province under Grant No.2006ABA354
文摘Recently Xia and Song [Phys. Lett. A 364 (2007) 117] have proposed a controlled quantum secure direct communication (CQSDC) protocol. They claimed that in their protocol only with the help of the controller Charlie, the receiver Alice can successfully extract the secret message from the sender Bob. In this letter, first we will show that within their protocol the controller Charlie's role could have been excluded if it were not for their unreasonable design. We then revise the Xia-Song CQSDC protocol such that its original advantages are reta/ned and the CQSDC can be really realized.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11147174)
文摘We present a scheme for quantum superdense coding with hyperentanglement, in which the sender can transfer four bits of classical information by sending only one photon. The important device in the scheme is the hyperentangled Bell-state analyzer in both polarization and frequency degrees of freedom, which is also constructed in the paper by using a quantum nondemolition detector assisted by cross-Kerr nonlinearity. Our scheme can transfer more informationwith less resources than the existing schemes and is nearly deterministic and nondestructive.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60678022 and 10704001)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20060357008)+2 种基金Anhui Provincial Natural Science Foundation (Grant No 070412060)the Talent Foundation of Anhui UniversityAnhui Key Laboratory of Information Materials and Devices (Anhui University)
文摘Quantum superdense coding (QSC) is an example of how entanglement can be used to minimize the number of carriers of classical information. This paper proposes two schemes for implementing QSC by means of cavity assisted interactions with single-photon pulses. The schemes are insensitive to the cavity decay and the thermal field, thus it might be realizable based on the current cavity QED techniques.