While wormholes are just as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. To allow for the possibility of interstellar travel, a macroscopic...While wormholes are just as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. To allow for the possibility of interstellar travel, a macroscopic wormhole would need to maintain sufficiently low radial tidal forces. It is proposed in this paper that the assumption of zero tidal forces, i.e., the limiting case, is sufficient for overcoming the restrictions from quantum field theory. The feasibility of this approach is subsequently discussed by 1) introducing the additional conditions needed to ensure that the radial tidal forces can indeed be sufficiently low and 2) by viewing traversable wormholes as emergent phenomena, thereby increasing the likelihood of their existence.展开更多
The cosmological constant problem arises because the magnitude of vacuum energy density predicted by the Quantum Field Theory is about 120 orders of magnitude larger then the value implied by cosmological observations...The cosmological constant problem arises because the magnitude of vacuum energy density predicted by the Quantum Field Theory is about 120 orders of magnitude larger then the value implied by cosmological observations of accelerating cosmic expansion. We pointed out that the fractal nature of the quantum space-time with negative Hausdorff-Colombeau dimensions can resolve this tension. The canonical Quantum Field Theory is widely believed to break down at some fundamental high-energy cutoff and therefore the quantum fluctuations in the vacuum can be treated classically seriously only up to this high-energy cutoff. In this paper we argue that the Quantum Field Theory in fractal space-time with negative Hausdorff-Colombeau dimensions gives high-energy cutoff on natural way. We argue that there exists hidden physical mechanism which cancels divergences in canonical QED4, QCD4, Higher-Derivative-Quantum gravity, etc. In fact we argue that corresponding supermassive Pauli-Villars ghost fields really exist. It means that there exists the ghost-driven acceleration of the universe hidden in cosmological constant. In order to obtain the desired physical result we apply the canonical Pauli-Villars regularization up to Λ*. This would fit in the observed value of the dark energy needed to explain the accelerated expansion of the universe if we choose highly symmetric masses distribution between standard matter and ghost matter below the scale Λ*, i.e., The small value of the cosmological constant is explained by tiny violation of the symmetry between standard matter and ghost matter. Dark matter nature is also explained using a common origin of the dark energy and dark matter phenomena.展开更多
文摘While wormholes are just as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. To allow for the possibility of interstellar travel, a macroscopic wormhole would need to maintain sufficiently low radial tidal forces. It is proposed in this paper that the assumption of zero tidal forces, i.e., the limiting case, is sufficient for overcoming the restrictions from quantum field theory. The feasibility of this approach is subsequently discussed by 1) introducing the additional conditions needed to ensure that the radial tidal forces can indeed be sufficiently low and 2) by viewing traversable wormholes as emergent phenomena, thereby increasing the likelihood of their existence.
文摘The cosmological constant problem arises because the magnitude of vacuum energy density predicted by the Quantum Field Theory is about 120 orders of magnitude larger then the value implied by cosmological observations of accelerating cosmic expansion. We pointed out that the fractal nature of the quantum space-time with negative Hausdorff-Colombeau dimensions can resolve this tension. The canonical Quantum Field Theory is widely believed to break down at some fundamental high-energy cutoff and therefore the quantum fluctuations in the vacuum can be treated classically seriously only up to this high-energy cutoff. In this paper we argue that the Quantum Field Theory in fractal space-time with negative Hausdorff-Colombeau dimensions gives high-energy cutoff on natural way. We argue that there exists hidden physical mechanism which cancels divergences in canonical QED4, QCD4, Higher-Derivative-Quantum gravity, etc. In fact we argue that corresponding supermassive Pauli-Villars ghost fields really exist. It means that there exists the ghost-driven acceleration of the universe hidden in cosmological constant. In order to obtain the desired physical result we apply the canonical Pauli-Villars regularization up to Λ*. This would fit in the observed value of the dark energy needed to explain the accelerated expansion of the universe if we choose highly symmetric masses distribution between standard matter and ghost matter below the scale Λ*, i.e., The small value of the cosmological constant is explained by tiny violation of the symmetry between standard matter and ghost matter. Dark matter nature is also explained using a common origin of the dark energy and dark matter phenomena.