Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be...Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be ignored,considering the fabrication of QCA devices at the molecular level where it could alter the functionality.Therefore,defects in QCA devices need to be analyzed.So far,the simulation-based displacement defect analysis has been presented in the literature,which results in an increased demand in the corresponding mathematical model.In this paper,the displacement defect analysis of the QCA main primitive,majority voter(MV),is presented and carried out both in simulation and mathematics,where the kink energy based mathematical model is applied.The results demonstrate that this model is valid for the displacement defect in QCA MV.展开更多
Quantum dot cellular automata(QCA)technology is emerging as a future technology which designs the digital circuits at quantum levels.The tech-nology has gained popularity in terms of designing digital circuits,which o...Quantum dot cellular automata(QCA)technology is emerging as a future technology which designs the digital circuits at quantum levels.The tech-nology has gained popularity in terms of designing digital circuits,which occupy very less area and less power dissipation in comparison to the present comple-mentary metal oxide semiconductor(CMOS)technology.For designing the rou-ters at quantum levels with non-blocking capabilities various multi-stage networks have been proposed.This manuscript presents the design of the N×NClos switch matrix as a multistage interconnecting network using quantum-dot cellular automata technology.The design of the Clos switch matrix presented in the article uses three input majority gates(MG).To design the 4×4 Clos switch matrix,a basic 2×2 switch architecture has been proposed as a basic mod-ule.The 2×2 switching matrix(SM)design presented in the manuscript utilizes three input majority gates.Also,the 2×2 SM has been proposed usingfive input majority gates.Two different approaches(1&2)have been presented for designing 2×2 SM usingfive input majority gates.The 2×2 SM design based on three input majority gate utilizes four zone clocking scheme to allow signal transmis-sion.Although,the clocking scheme used in 2×2 SM using three input MG and in 2×2 SM approach 1 usingfive input MG is conventional.The 2×2 SM approach 2 design,utilizes the clocking scheme in which clocks can be applied by electricfield generators easily and in turn the switch element becomes physically realizable.The simulation results conclude that the 2×2 SM is suitable for designing a 4×4 Clos network.A higher order of input-output switching matrix,supporting more number of users can utilize the proposed designs.展开更多
Quantum-dot cellular automaton (QCA) is an emerging, promising, future generation nanoelectronic computational architecture that encodes binary information as electronic charge configuration of a cell. It is a digital...Quantum-dot cellular automaton (QCA) is an emerging, promising, future generation nanoelectronic computational architecture that encodes binary information as electronic charge configuration of a cell. It is a digital logic architecture that uses single electrons in arrays of quantum dots to perform binary operations. Fundamental unit in building of QCA circuits is a QCA cell. A QCA cell is an elementary building block which can be used to build basic gates and logic devices in QCA architectures. This paper evaluates the performance of various implementations of QCA based XOR gates and proposes various novel layouts with better performance parameters. We presented the various QCA circuit design methodology for XOR gate. These layouts show less number of crossovers and lesser cell count as compared to the conventional layouts already present in the literature. These design topologies have special functions in communication based circuit applications. They are particularly useful in phase detectors in digital circuits, arithmetic operations and error detection & correction circuits. The comparison of various circuit designs is also given. The proposed designs can be effectively used to realize more complex circuits. The simulations in the present work have been carried out using QCADesigner tool.展开更多
To fill the continuous needs for faster processing elements with less power consumption causes large pressure on the complementary metal oxide semiconductor(CMOS)technology developers.The scaling scenario is not an op...To fill the continuous needs for faster processing elements with less power consumption causes large pressure on the complementary metal oxide semiconductor(CMOS)technology developers.The scaling scenario is not an option nowadays and other technologies need to be investigated.The quantum-dot cellular automata(QCA)technology is one of the important emerging nanotechnologies that have attracted much researchers’attention in recent years.This technology has many interesting features,such as high speed,low power consumption,and small size.These features make it an appropriate alternative to the CMOS technique.This paper suggests three novel structures of XNOR gates in the QCA technology.The presented structures do not follow the conventional approaches to the logic gates design but depend on the inherent capabilities of the new technology.The proposed structures are used as the main building blocks for a single-bit comparator.The resulted circuits are simulated for the verification purpose and then compared with existing counterparts in the literature.The comparison results are encouraging to append the proposed structures to the library of QCA gates.展开更多
Quantum-dot cellular automaton (QCA) is a novel nanotechnology that provides a very different computation platform than traditional CMOS, in which polarization of electrons indicates the digital information. This pape...Quantum-dot cellular automaton (QCA) is a novel nanotechnology that provides a very different computation platform than traditional CMOS, in which polarization of electrons indicates the digital information. This paper demonstrates designing combinational circuits based on quantum-dot cellular automata (QCA) nanotechnology, which offers a way to implement logic and all interconnections with only one homogeneous layer of cells. In this paper, the authors have proposed a novel design of XOR gate. This model proves designing capabilities of combinational circuits that are compatible with QCA gates within nano-scale. Novel adder circuits such as half adders, full adders, which avoid the fore, mentioned noise paths, crossovers by careful clocking organization, have been proposed. Experiment results show that the performance of proposed designs is more efficient than conventional designs. The modular layouts are verified with the freely available QCA Designer tool.展开更多
If an external point charge and the movable charges of an isolated quantum-dot cellular automata (QCA) cell have the same polarity, the point charge greatly affects the polarization (P) of the cell only when it is in ...If an external point charge and the movable charges of an isolated quantum-dot cellular automata (QCA) cell have the same polarity, the point charge greatly affects the polarization (P) of the cell only when it is in a narrow band with periodically changing width. The center of the band is on a radius R circle. The ratio of R to the electric charge (q) is a constant determined by the parameters of the cell. A QCA cell can be used as charge detector based on the above phenomenon.展开更多
The authors present an analysis of the fault tolerant properties and the effects of temperature on an exclusive OR (XOR) gate and a full adder device implemented using quantum-dot cellular automata (QCA) structures. A...The authors present an analysis of the fault tolerant properties and the effects of temperature on an exclusive OR (XOR) gate and a full adder device implemented using quantum-dot cellular automata (QCA) structures. A Hubbard-type Hamiltonian and the Inter-cellular Hartree approximation have been used for modeling, and a uniform random distribution has been implemented for the simulated dot displacements within cells. We have shown characteristic features of all four possible input configurations for the XOR device. The device performance degrades significantly as the magnitude of defects and the temperature increase. Our results show that the fault-tolerant characteristics of an XOR device are highly dependent on the input configurations. The input signal that travels through the wire crossing (also called a crossover) in the central part of the device weakens the signal significantly. The presence of multiple wire crossings in the full adder design has a major impact on the functionality of the device. Even at absolute zero temperature, the effect of the dot displacement defect is very significant. We have observed that the breakdown characteristic is much more pronounced in the full adder than in any other devices under investigation.展开更多
Quantum-dot cellular automata(QCA)is a new nanotechnology for the implementation of nano-sized digital circuits.This nanotechnology is remarkable in terms of speed,area,and power consumption compared to complementary ...Quantum-dot cellular automata(QCA)is a new nanotechnology for the implementation of nano-sized digital circuits.This nanotechnology is remarkable in terms of speed,area,and power consumption compared to complementary metal-oxide-semiconductor(CMOS)technology and can significantly improve the design of various logic circuits.We propose a new method for implementing a T-latch in QCA technology in this paper.The proposed method uses the intrinsic features of QCA in timing and clock phases,and therefore,the proposed cell structure is less occupied and less power-consuming than existing implementation methods.In the proposed T-latch,compared to previous best designs,reductions of 6.45%in area occupation and 44.49%in power consumption were achieved.In addition,for the first time,a reset-based T-latch and a T-latch with set and reset capabilities are designed.Using the proposed T-latch,a new 3-bit counter is developed which reduces 2.14%cell numbers compared to the best of previous designs.Moreover,based on the 3-bit counter,a 4-bit counter is designed,which reduces 0.51%cell numbers and 4.16%cross-section area compared to previous designs.In addition,two selective counters are introduced to count from 0 to 5 and from 2 to 5.Simulations were performed using QCADesigner and QCAPro tools in coherence vector engine mode.The proposed circuits are compared with related designs in terms of delay,cell numbers,area,and leakage power.展开更多
Reversible logic has recently gained significant interest due to its inherent ability to reduce energy dissipation,which is the primary need for low-power digital circuits.One of the newest areas of relevant study is ...Reversible logic has recently gained significant interest due to its inherent ability to reduce energy dissipation,which is the primary need for low-power digital circuits.One of the newest areas of relevant study is reversible logic,which has applications in many areas,including nanotechnology,DNA computing,quantum computing,fault tolerance,and low-power complementary metal-oxide-semiconductor(CMOS).An electrical circuit is classified as reversible if it has an equal number of inputs and outputs,and a one-to-one relationship.A reversible circuit is conservative if the EXOR of the inputs and the EXOR of the outputs are equivalent.In addition,quantum-dot cellular automata(QCA)is one of the state-of-the-art approaches that can be used as an alternative to traditional technologies.Hence,we propose an efficient conservative gate with low power demand and high speed in this paper.First,we present a reversible gate called ANG(Ahmadpour Navimipour Gate).Then,two non-resistant QCA ANG and reversible fault-tolerant ANG structures are implemented in QCA technology.The suggested reversible gate is realized through the Miller algorithm.Subsequently,reversible fault-tolerant ANG is implemented by the 2DW clocking scheme.Furthermore,the power consumption of the suggested ANG is assessed under different energy ranges(0.5Ek,1.0Ek,and 1.5Ek).Simulations of the structures and analysis of their power consumption are performed using QCADesigner 2.0.03 and QCAPro software.The proposed gate shows great improvements compared to recent designs.展开更多
Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received me...Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received message is a major factor. Besides, device density and power dissipation are the key issues in the nanocommunication architecture. For the first time, QCA-based designs of the reversible low-power odd parity generator and odd parity checker using the Feynman gate have been achieved in this study. Using the proposed parity generator and parity checker circuit, a nanocommunication architecture is pro- posed. The detection of errors in the received message during transmission is also explored. The proposed QCA Feynman gate outshines the existing ones in terms of area, cell count, and delay. The quantum costs of the proposed conventional reversible circuits and their QCA layouts are calculated and compared, which establishes that the proposed QCA circuits have very low quantum cost compared to conventional designs. The energy dissipation by the layouts is estimated, which ensures the possibility ofQCA nano-device serving as an alternative platform for the implementation of reversible circuits. The stability of the proposed circuits under thermal randomness is analyzed, showing the operational efficiency of the circuits. The simulation results of the proposed design are tested with theoretical values, showing the accuracy of the circuits. The proposed circuits can be used to design more complex low-power nanoscale lossless cation architecture such as nano-transmitters and nano-receivers展开更多
Quantum-dot cellular automata (QCA) based on cryptography is a new paradigm in the field of nanotechnology. The overall performance of QCA is high compared to traditional complementary metal-oxide semiconductor (CMOS)...Quantum-dot cellular automata (QCA) based on cryptography is a new paradigm in the field of nanotechnology. The overall performance of QCA is high compared to traditional complementary metal-oxide semiconductor (CMOS) technology. To achieve data security during nanocommunication, a cryptography-based application is proposed. The devised circuit encrypts the input data and passes it to an output channel through a nanorouter cum data path selector, where the data is decrypted back to its original form. The results along with theoretical implication prove the accuracy of the circuit. Power dissipation and circuit complexity of the circuit have been analyzed.展开更多
文摘Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be ignored,considering the fabrication of QCA devices at the molecular level where it could alter the functionality.Therefore,defects in QCA devices need to be analyzed.So far,the simulation-based displacement defect analysis has been presented in the literature,which results in an increased demand in the corresponding mathematical model.In this paper,the displacement defect analysis of the QCA main primitive,majority voter(MV),is presented and carried out both in simulation and mathematics,where the kink energy based mathematical model is applied.The results demonstrate that this model is valid for the displacement defect in QCA MV.
文摘Quantum dot cellular automata(QCA)technology is emerging as a future technology which designs the digital circuits at quantum levels.The tech-nology has gained popularity in terms of designing digital circuits,which occupy very less area and less power dissipation in comparison to the present comple-mentary metal oxide semiconductor(CMOS)technology.For designing the rou-ters at quantum levels with non-blocking capabilities various multi-stage networks have been proposed.This manuscript presents the design of the N×NClos switch matrix as a multistage interconnecting network using quantum-dot cellular automata technology.The design of the Clos switch matrix presented in the article uses three input majority gates(MG).To design the 4×4 Clos switch matrix,a basic 2×2 switch architecture has been proposed as a basic mod-ule.The 2×2 switching matrix(SM)design presented in the manuscript utilizes three input majority gates.Also,the 2×2 SM has been proposed usingfive input majority gates.Two different approaches(1&2)have been presented for designing 2×2 SM usingfive input majority gates.The 2×2 SM design based on three input majority gate utilizes four zone clocking scheme to allow signal transmis-sion.Although,the clocking scheme used in 2×2 SM using three input MG and in 2×2 SM approach 1 usingfive input MG is conventional.The 2×2 SM approach 2 design,utilizes the clocking scheme in which clocks can be applied by electricfield generators easily and in turn the switch element becomes physically realizable.The simulation results conclude that the 2×2 SM is suitable for designing a 4×4 Clos network.A higher order of input-output switching matrix,supporting more number of users can utilize the proposed designs.
文摘Quantum-dot cellular automaton (QCA) is an emerging, promising, future generation nanoelectronic computational architecture that encodes binary information as electronic charge configuration of a cell. It is a digital logic architecture that uses single electrons in arrays of quantum dots to perform binary operations. Fundamental unit in building of QCA circuits is a QCA cell. A QCA cell is an elementary building block which can be used to build basic gates and logic devices in QCA architectures. This paper evaluates the performance of various implementations of QCA based XOR gates and proposes various novel layouts with better performance parameters. We presented the various QCA circuit design methodology for XOR gate. These layouts show less number of crossovers and lesser cell count as compared to the conventional layouts already present in the literature. These design topologies have special functions in communication based circuit applications. They are particularly useful in phase detectors in digital circuits, arithmetic operations and error detection & correction circuits. The comparison of various circuit designs is also given. The proposed designs can be effectively used to realize more complex circuits. The simulations in the present work have been carried out using QCADesigner tool.
文摘To fill the continuous needs for faster processing elements with less power consumption causes large pressure on the complementary metal oxide semiconductor(CMOS)technology developers.The scaling scenario is not an option nowadays and other technologies need to be investigated.The quantum-dot cellular automata(QCA)technology is one of the important emerging nanotechnologies that have attracted much researchers’attention in recent years.This technology has many interesting features,such as high speed,low power consumption,and small size.These features make it an appropriate alternative to the CMOS technique.This paper suggests three novel structures of XNOR gates in the QCA technology.The presented structures do not follow the conventional approaches to the logic gates design but depend on the inherent capabilities of the new technology.The proposed structures are used as the main building blocks for a single-bit comparator.The resulted circuits are simulated for the verification purpose and then compared with existing counterparts in the literature.The comparison results are encouraging to append the proposed structures to the library of QCA gates.
文摘Quantum-dot cellular automaton (QCA) is a novel nanotechnology that provides a very different computation platform than traditional CMOS, in which polarization of electrons indicates the digital information. This paper demonstrates designing combinational circuits based on quantum-dot cellular automata (QCA) nanotechnology, which offers a way to implement logic and all interconnections with only one homogeneous layer of cells. In this paper, the authors have proposed a novel design of XOR gate. This model proves designing capabilities of combinational circuits that are compatible with QCA gates within nano-scale. Novel adder circuits such as half adders, full adders, which avoid the fore, mentioned noise paths, crossovers by careful clocking organization, have been proposed. Experiment results show that the performance of proposed designs is more efficient than conventional designs. The modular layouts are verified with the freely available QCA Designer tool.
文摘If an external point charge and the movable charges of an isolated quantum-dot cellular automata (QCA) cell have the same polarity, the point charge greatly affects the polarization (P) of the cell only when it is in a narrow band with periodically changing width. The center of the band is on a radius R circle. The ratio of R to the electric charge (q) is a constant determined by the parameters of the cell. A QCA cell can be used as charge detector based on the above phenomenon.
文摘The authors present an analysis of the fault tolerant properties and the effects of temperature on an exclusive OR (XOR) gate and a full adder device implemented using quantum-dot cellular automata (QCA) structures. A Hubbard-type Hamiltonian and the Inter-cellular Hartree approximation have been used for modeling, and a uniform random distribution has been implemented for the simulated dot displacements within cells. We have shown characteristic features of all four possible input configurations for the XOR device. The device performance degrades significantly as the magnitude of defects and the temperature increase. Our results show that the fault-tolerant characteristics of an XOR device are highly dependent on the input configurations. The input signal that travels through the wire crossing (also called a crossover) in the central part of the device weakens the signal significantly. The presence of multiple wire crossings in the full adder design has a major impact on the functionality of the device. Even at absolute zero temperature, the effect of the dot displacement defect is very significant. We have observed that the breakdown characteristic is much more pronounced in the full adder than in any other devices under investigation.
基金Project supported by the Iran National Science Foundation(No.4005782)。
文摘Quantum-dot cellular automata(QCA)is a new nanotechnology for the implementation of nano-sized digital circuits.This nanotechnology is remarkable in terms of speed,area,and power consumption compared to complementary metal-oxide-semiconductor(CMOS)technology and can significantly improve the design of various logic circuits.We propose a new method for implementing a T-latch in QCA technology in this paper.The proposed method uses the intrinsic features of QCA in timing and clock phases,and therefore,the proposed cell structure is less occupied and less power-consuming than existing implementation methods.In the proposed T-latch,compared to previous best designs,reductions of 6.45%in area occupation and 44.49%in power consumption were achieved.In addition,for the first time,a reset-based T-latch and a T-latch with set and reset capabilities are designed.Using the proposed T-latch,a new 3-bit counter is developed which reduces 2.14%cell numbers compared to the best of previous designs.Moreover,based on the 3-bit counter,a 4-bit counter is designed,which reduces 0.51%cell numbers and 4.16%cross-section area compared to previous designs.In addition,two selective counters are introduced to count from 0 to 5 and from 2 to 5.Simulations were performed using QCADesigner and QCAPro tools in coherence vector engine mode.The proposed circuits are compared with related designs in terms of delay,cell numbers,area,and leakage power.
文摘Reversible logic has recently gained significant interest due to its inherent ability to reduce energy dissipation,which is the primary need for low-power digital circuits.One of the newest areas of relevant study is reversible logic,which has applications in many areas,including nanotechnology,DNA computing,quantum computing,fault tolerance,and low-power complementary metal-oxide-semiconductor(CMOS).An electrical circuit is classified as reversible if it has an equal number of inputs and outputs,and a one-to-one relationship.A reversible circuit is conservative if the EXOR of the inputs and the EXOR of the outputs are equivalent.In addition,quantum-dot cellular automata(QCA)is one of the state-of-the-art approaches that can be used as an alternative to traditional technologies.Hence,we propose an efficient conservative gate with low power demand and high speed in this paper.First,we present a reversible gate called ANG(Ahmadpour Navimipour Gate).Then,two non-resistant QCA ANG and reversible fault-tolerant ANG structures are implemented in QCA technology.The suggested reversible gate is realized through the Miller algorithm.Subsequently,reversible fault-tolerant ANG is implemented by the 2DW clocking scheme.Furthermore,the power consumption of the suggested ANG is assessed under different energy ranges(0.5Ek,1.0Ek,and 1.5Ek).Simulations of the structures and analysis of their power consumption are performed using QCADesigner 2.0.03 and QCAPro software.The proposed gate shows great improvements compared to recent designs.
基金Project supported by the University Grants Commission of India(No.41-631/2012(S.R.))
文摘Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received message is a major factor. Besides, device density and power dissipation are the key issues in the nanocommunication architecture. For the first time, QCA-based designs of the reversible low-power odd parity generator and odd parity checker using the Feynman gate have been achieved in this study. Using the proposed parity generator and parity checker circuit, a nanocommunication architecture is pro- posed. The detection of errors in the received message during transmission is also explored. The proposed QCA Feynman gate outshines the existing ones in terms of area, cell count, and delay. The quantum costs of the proposed conventional reversible circuits and their QCA layouts are calculated and compared, which establishes that the proposed QCA circuits have very low quantum cost compared to conventional designs. The energy dissipation by the layouts is estimated, which ensures the possibility ofQCA nano-device serving as an alternative platform for the implementation of reversible circuits. The stability of the proposed circuits under thermal randomness is analyzed, showing the operational efficiency of the circuits. The simulation results of the proposed design are tested with theoretical values, showing the accuracy of the circuits. The proposed circuits can be used to design more complex low-power nanoscale lossless cation architecture such as nano-transmitters and nano-receivers
文摘Quantum-dot cellular automata (QCA) based on cryptography is a new paradigm in the field of nanotechnology. The overall performance of QCA is high compared to traditional complementary metal-oxide semiconductor (CMOS) technology. To achieve data security during nanocommunication, a cryptography-based application is proposed. The devised circuit encrypts the input data and passes it to an output channel through a nanorouter cum data path selector, where the data is decrypted back to its original form. The results along with theoretical implication prove the accuracy of the circuit. Power dissipation and circuit complexity of the circuit have been analyzed.