期刊文献+
共找到442篇文章
< 1 2 23 >
每页显示 20 50 100
Quantum-inspired ant algorithm for knapsack problems 被引量:3
1
作者 Wang Honggang Ma Liang Zhang Huizhen Li Gaoya 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1012-1016,共5页
The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack prob... The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated. 展开更多
关键词 knapsack problem quantum computing ant algorithm quantum-inspired ant algorithm.
下载PDF
Enhanced minimum attribute reduction based on quantum-inspired shuffled frog leaping algorithm 被引量:3
2
作者 Weiping Ding Jiandong Wang +1 位作者 Zhijin Guan Quan Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期426-434,共9页
Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it i... Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction. 展开更多
关键词 minimum attribute reduction quantum-inspired shuf- fled frog leaping algorithm multi-state quantum bit quantum rotation gate and quantum mutation elitist frog.
下载PDF
NOVEL QUANTUM-INSPIRED GENETIC ALGORITHM BASED ON IMMUNITY
3
作者 LiYing ZhaoRongchun +1 位作者 ZhangYanning JiaoLicheng 《Journal of Electronics(China)》 2005年第4期371-378,共8页
A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's... A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's advantages, IQGA utilizes the characteristics and knowledge in the pending problems for restraining the repeated and ineffective operations during evolution, so as to improve the algorithm efficiency. The experimental results of the knapsack problem show that the performance of IQGA is superior to the Conventional Genetic Algorithm (CGA), the Immune Genetic Algorithm (IGA) and QGA. 展开更多
关键词 Genetic algorithm(GA) quantum-inspired Genetic algorithm(QGA) Immune operator Knapsack problem
下载PDF
OPTIMIZATION OF AIRPORT TAXIING PLANNING DURING CONGESTED HOURS BASED ON IMMUNE CLONAL SELECTION ALGORITHM 被引量:1
4
作者 柳青 吴桐水 宋祥波 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期294-301,共8页
In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical j... In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical job shop-schedule problem is adopted and three types of special aircraft-taxi conflicts are considered in the constraints. To solve such nondeterministic polynomial time-complex problems, the immune clonal selection algorithm(ICSA) is introduced. The simulation results in a congested hour of Beijing Capital International Airport show that, compared with the first-come-first-served(FCFS) strategy, the optimization-planning strategy reduces the total scheduling time by 13.6 min and the taxiing time per aircraft by 45.3 s, which improves the capacity of the runway and the efficiency of airport operations. 展开更多
关键词 aircraft taxiing schedule airport operation control hub airport congested hours immune clonal selection algorithm(ICSA)
下载PDF
Clonal Selection Based Memetic Algorithm for Job Shop Scheduling Problems 被引量:4
5
作者 Jin-hui Yang Liang Sun +2 位作者 Heow Pueh Lee Yun Qian Yan-chun Liang 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第2期111-119,共9页
A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exp... A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm. 展开更多
关键词 job shop scheduling problem clonal selection algorithm simulated annealing global search local search
下载PDF
Feasibility Study of Parameter Identification Method Based on Symbolic Time Series Analysis and Adaptive Immune Clonal Selection Algorithm 被引量:1
6
作者 Rongshuai Li Akira Mita Jin Zhou 《Open Journal of Civil Engineering》 2012年第4期198-205,共8页
The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the... The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. The effect of the parameters in STSA is theoretically evaluated and numerically verified. AICSA is employed to minimize the error between the state sequence histogram (SSH) that is transformed from raw acceleration data by STSA. The proposed methodology is evaluated by comparing it with AICSA using raw acceleration data. AICSA combining STSA is proved to be a powerful tool for identifying unknown parameters of structural systems even when the data is contaminated with relatively large amounts of noise. 展开更多
关键词 STRUCTURAL HEALTH Monitoring clonal SELECTION algorithm SYMBOLIC Time Series Analysis Adaptive IMMUNE Building Structures
下载PDF
融合NSGA-II和CSA的多目标车间调度
7
作者 杨青 席珍珍 +2 位作者 葛亮 林星宇 邢志超 《计算机工程与应用》 CSCD 北大核心 2024年第4期315-323,共9页
针对在灵活车间系统中调度作业和自动引导车(automated guide vehicle,AGV)的同时调度问题,考虑在有限多个AGV和加工机台的情况下,以最小化最大完工时间、单个AGV搬运消耗时间及所有AGV搬运总消耗时间为目标函数,设计融合NSGA-II(non-do... 针对在灵活车间系统中调度作业和自动引导车(automated guide vehicle,AGV)的同时调度问题,考虑在有限多个AGV和加工机台的情况下,以最小化最大完工时间、单个AGV搬运消耗时间及所有AGV搬运总消耗时间为目标函数,设计融合NSGA-II(non-dominated sorting genetic algorithms)和克隆选择(clonal selection algorithm,CSA)的改进算法INGCSA来解决此类问题。采用工件、加工机台和AGV三部分编码;引入非支配排序和目标函数值大小排序后总得分进行种群分层,从而有效地保留优秀个体;针对克隆后的种群,对不同等级的种群采取不同的变异概率,并对染色体进行内部交换与均匀交叉混合交换的基因重组,有效地提高了种群的多样性与防止陷入局部最优。通过三组对比实验,验证了该算法在探索最优解时,具有运行时间短、稳定性高和收敛性好等优点。 展开更多
关键词 NSGA-II 克隆选择算法 任务调度 运输调度 自动引导车(AGV)
下载PDF
纺织车间搬运机器人任务自适应分配研究
8
作者 刘金涛 张曦 +1 位作者 王基月 王心超 《机械设计与制造》 北大核心 2024年第2期300-304,共5页
智能化纺织车间中的搬运机器人与一般传统车间不同,任务多且复杂,导致任务分配难度增加,提出针对现代化纺织车间搬运机器人的任务自适应分配方法。分析纺织车间环境、搬运任务要求及搬运机器人参数,构建机器人任务自适应分配模型,采用... 智能化纺织车间中的搬运机器人与一般传统车间不同,任务多且复杂,导致任务分配难度增加,提出针对现代化纺织车间搬运机器人的任务自适应分配方法。分析纺织车间环境、搬运任务要求及搬运机器人参数,构建机器人任务自适应分配模型,采用克隆选择算法初始化遗传算法的种群并计算其亲和度及浓度,通过克隆、变异及选择方式获取模型最优解,实现纺织车间搬运机器人任务自适应分配。实验结果表明,这种方法在纺织车间搬运机器人任务分配中效率高、碰撞次数少、搜集时间短,实际应用效果好。 展开更多
关键词 纺织车间 搬运机器人 任务分配模型 克隆选择算法 变异 模型最优解
下载PDF
基于改进克隆选择算法的电力物资仓储布局规划系统设计
9
作者 吴璇 马俊明 孙道盛 《微型电脑应用》 2024年第1期157-160,共4页
为了实现对电力物资仓储的布局优化,采用Apriori算法构建电力物资仓储优化模型,在克隆选择模型的基础上,加入疫苗接种策略,构建改进克隆选择模型。测试结果显示,在Sphere函数和Ackley函数上,改进克隆选择算法经过400次迭代后趋于收敛,... 为了实现对电力物资仓储的布局优化,采用Apriori算法构建电力物资仓储优化模型,在克隆选择模型的基础上,加入疫苗接种策略,构建改进克隆选择模型。测试结果显示,在Sphere函数和Ackley函数上,改进克隆选择算法经过400次迭代后趋于收敛,适应度值为10^(-75)和10^(-17)。对F函数进行求解,改进克隆选择算法取得最优解1.03,平均解1.12,平均优化效率8.20%,标准方差0.07,优化效率提升了14.15%。在对物资进行分类中,改进克隆选择算法准确率分别为94.5%和89.6%。在不同种类的物资出入库中,改进克隆选择算法的最小化出入库时间分别为8.5s、12.7s、20.9s和37.2s。改进克隆选择算法优化了仓储的布局,提升了电力物资配送的效率。 展开更多
关键词 仓储布局 APRIORI算法 关联分析 克隆选择算法
下载PDF
融合多策略改进的克隆选择算法
10
作者 张文豪 杨超 +2 位作者 彭旭 王道维 范波 《计算机技术与发展》 2024年第6期140-147,共8页
针对克隆选择算法(CSA)解决复杂优化问题时存在的效率低下、收敛速度慢以及容易陷入局部最优等不足,提出了一种融合多策略改进的克隆选择算法(MSICSA)。首先,引入Sobol序列初始化种群,丰富种群多样性,并提高算法整体稳定性;其次,引入正... 针对克隆选择算法(CSA)解决复杂优化问题时存在的效率低下、收敛速度慢以及容易陷入局部最优等不足,提出了一种融合多策略改进的克隆选择算法(MSICSA)。首先,引入Sobol序列初始化种群,丰富种群多样性,并提高算法整体稳定性;其次,引入正余弦优化策略加强算法全局搜索能力,避免陷入局部最优而导致算法停滞;最后,引入动态浓度调节策略,调节算法在不同时期搜索空间内的抗体浓度,控制算法加强前期全局搜索以及后期局部寻优能力,并提高算法收敛速度。文中利用12种CEC测试函数及4种算法对MSICSA进行测试及对比,消融实验证明了改进策略的有效性,扰动实验验证了文中算法的稳定性与鲁棒性,对比仿真以及几项实验均表明MSICSA能够有效提升收敛速度和寻优精度,并提高跳出局部最优的能力。 展开更多
关键词 克隆选择算法 正余弦优化策略 浓度调节策略 Sobol序列 抗体变异
下载PDF
权重自适应clonal选择算法及其应用研究
11
作者 李勇 王昱 《控制工程》 CSCD 北大核心 2011年第1期96-99,共4页
在求解两个目标以上的多目标优化问题时,基于Pareto支配的多目标进化算法多数需要较长的求解时间。基于固定权重的聚合函数方法求解速度快,但要确定一个适合待求解问题的合理权重是十分困难的,为了解决这一问题,将clonal选择算法与权重... 在求解两个目标以上的多目标优化问题时,基于Pareto支配的多目标进化算法多数需要较长的求解时间。基于固定权重的聚合函数方法求解速度快,但要确定一个适合待求解问题的合理权重是十分困难的,为了解决这一问题,将clonal选择算法与权重自适应方法相结合,提出了一种适用于多目标优化问题的权重自适应clonal选择算法。并将权重自适应clon-al选择算法应用于以等功率裕量、轧制能耗及带钢打滑概率作为优化的目标函数的三目标优化模型进行冷连轧轧制规程多目标优化。结果表明,与实际应用的轧制规程相比优化后的轧制规程使功率裕量更加均衡,打滑发生的机率变小,同时也降低了总的轧制能耗。与权重自适应遗传算法相比,该算法能更好的达到预期的优化效果。 展开更多
关键词 权重自适应 clonal选择算法 冷连轧机 轧制规程 多目标优化
下载PDF
Hybrid anti-prematuration optimization algorithm
12
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
下载PDF
An Effective Hybrid Optimization Algorithm for Capacitated Vehicle Routing Problem
13
作者 陈爱玲 杨根科 吴智铭 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第1期50-55,共6页
Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high ... Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem. 展开更多
关键词 capacitated vehicle routing problem artificial immune clonal algorithm simulated annealing
下载PDF
Hybrid Methodology for Structural Health Monitoring Based on Immune Algorithms and Symbolic Time Series Analysis
14
作者 Rongshuai Li Akira Mita Jin Zhou 《Journal of Intelligent Learning Systems and Applications》 2013年第1期48-56,共9页
This hybrid methodology for structural health monitoring (SHM) is based on immune algorithms (IAs) and symbolic time series analysis (STSA). Real-valued negative selection (RNS) is used to detect damage detection and ... This hybrid methodology for structural health monitoring (SHM) is based on immune algorithms (IAs) and symbolic time series analysis (STSA). Real-valued negative selection (RNS) is used to detect damage detection and adaptive immune clonal selection algorithm (AICSA) is used to localize and quantify the damage. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. This paper explains the mathematical basis of STSA and the procedure of the hybrid methodology. It also describes the results of an simulation experiment on a five-story shear frame structure that indicated the hybrid strategy can efficiently and precisely detect, localize and quantify damage to civil engineering structures in the presence of measurement noise. 展开更多
关键词 Structural Health Monitoring Adaptive IMMUNE clonal SELECTION algorithm SYMBOLIC Time Series Analysis Real-Valued Negative SELECTION Building Structures
下载PDF
基于物联网的远程温室视觉监控系统设计与实现 被引量:3
15
作者 张净 张康 +1 位作者 刘晓梅 杨宁 《中国农机化学报》 北大核心 2023年第1期100-107,共8页
在当前智慧农业的大环境下,农作物生长过程的识别与监控问题一直是一项具有挑战性的任务,基于此提出一种基于物联网的远程温室视觉监控系统,系统通过LoRa无线通信技术监测温室内的温湿度、光照强度等环境参数,能够及时监测到农作物的生... 在当前智慧农业的大环境下,农作物生长过程的识别与监控问题一直是一项具有挑战性的任务,基于此提出一种基于物联网的远程温室视觉监控系统,系统通过LoRa无线通信技术监测温室内的温湿度、光照强度等环境参数,能够及时监测到农作物的生长状况,并实现自动通风、自动补光等功能。在PC端的Qt上位机实时监测温室内的环境信息并控制环境参数,通过OV9726摄像头对农作物进行监测,所获得的生长状态信息传输到S3C6410集中控制模块进行处理,结合克隆选择算法和朴素贝叶斯分类器对叶片进行识别处理。本系统采用LoRa模块进行自组网来实现环境监测,将Linux操作系统移植到集中控制模块,为视觉系统软硬件平台的搭建做准备工作,所使用的组合算法能够使得农作物叶片识别率达到95.3%,识别时间达到8.4 ms,对于叶片识别精度等方面有着明显的提升,经过实验充分验证本系统所使用的设备与算法的有效性。 展开更多
关键词 LoRa 叶片识别 克隆选择算法 朴素贝叶斯 QT LINUX操作系统
下载PDF
A Novel Quantum - inspired Multi - Objective Evolutionary Algorithm Based on Cloud Theory
16
作者 Bo Xu~1 Wang Cheng~2 Jian-Ping Yu~3 Yong Wang~4 (1.Department of Computer Science and Technology,Guangdong University of Petrochemical Technology,Maoming,Guangdong,525000) (2.Wells Fargo Bank,USA) (3.College of Mathematics and Computer Science,Hunan Normal University,Changsha,410081) (4.College of Electrical and Information Engineering,Hunan University,Changsha,410082) 《自动化博览》 2011年第S2期145-150,共6页
In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the ... In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ. 展开更多
关键词 MULTI-OBJECTIVE Optimization PROBLEM quantum-inspired MULTI-OBJECTIVE EVOLUTIONARY algorithm CLOUD Model EVOLUTIONARY algorithm
下载PDF
基于Huff模型的电动汽车充电站选址定容方法 被引量:3
17
作者 刘东林 王育飞 +3 位作者 张宇 薛花 米阳 于艾清 《电力自动化设备》 EI CSCD 北大核心 2023年第11期103-110,共8页
对于用户充电选择行为随机性的欠考虑,导致充电站服务范围划分和容量配置不合理的问题,提出了一种基于Huff模型的电动汽车充电站选址定容方法。综合考虑充电站规模、充电价格、用户充电成本对用户充电选择行为的影响,利用Huff模型分析... 对于用户充电选择行为随机性的欠考虑,导致充电站服务范围划分和容量配置不合理的问题,提出了一种基于Huff模型的电动汽车充电站选址定容方法。综合考虑充电站规模、充电价格、用户充电成本对用户充电选择行为的影响,利用Huff模型分析用户对不同充电站的选择概率,并基于用户的选择概率确定充电站的服务范围和充电需求;综合考虑用户充电可达性、规划区域总功率、电动汽车充电功率,以充电站年总成本最小为目标,建立充电站的选址定容模型,并采用免疫克隆选择-变邻域搜索混合算法求解模型。MATLAB仿真结果表明所提选址定容方法能合理地划分服务范围,提高充电站规划的经济性。 展开更多
关键词 电动汽车 充电站 Huff模型 服务范围 免疫克隆选择算法 充电随机性
下载PDF
混合变异克隆选择算法及其在机械臂逆运动学问题中的应用 被引量:1
18
作者 石建平 代天军 +1 位作者 周章渝 刘鹏 《计算机集成制造系统》 EI CSCD 北大核心 2023年第5期1539-1549,共11页
为改善克隆选择算法(CSA)在解决复杂优化问题时收敛质量不高的不足,提出一种基于混合变异的改进克隆选择算法(HMCSA),并将该算法用于解决冗余机械臂的逆运动学问题。改进算法采用了混合差分变异与克隆选择进化的两级混合协同搜索模式,... 为改善克隆选择算法(CSA)在解决复杂优化问题时收敛质量不高的不足,提出一种基于混合变异的改进克隆选择算法(HMCSA),并将该算法用于解决冗余机械臂的逆运动学问题。改进算法采用了混合差分变异与克隆选择进化的两级混合协同搜索模式,有效平衡了算法的全局探索与局部开发,从而较好地克服了基本克隆选择算法容易陷入局部极值而早熟收敛的现象。通过抗体成功搜索经验的动态实时共享,加速了算法的收敛速度以及提升了算法的收敛精度。此外,与对比算法相比,HMCSA算法具有需要设置参数更少的优点,便于算法的应用推广。通过经典的基准测试函数优化问题验证了HMCSA算法的有效性;在冗余机械臂运动学逆解的优化求解中,HMCSA算法同样获得了较好的优化效果,为解决机器人的逆运动学问题提供了新思路。 展开更多
关键词 冗余机械臂 逆运动学 克隆选择算法 混合变异
下载PDF
Hamming-distance-based adaptive quantum-inspired evolutionary algorithm for network coding resources optimization 被引量:10
19
作者 Qu Zhijian Liu Xiaohong +2 位作者 Zhang Xianwei Xie Yinbao Li Caihong 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2015年第3期92-99,共8页
An adaptive quantum-inspired evolutionary algorithm based on Hamming distance (HD-QEA) was presented to optimize the network coding resources in multicast networks. In the HD-QEA, the diversity among individuals was... An adaptive quantum-inspired evolutionary algorithm based on Hamming distance (HD-QEA) was presented to optimize the network coding resources in multicast networks. In the HD-QEA, the diversity among individuals was taken into consideration, and a suitable rotation angle step (RAS) was assigned to each individual according to the Hamming distance. Performance comparisons were conducted among the HD-QEA, a basic quantum-inspired evolutionary algorithm (QEA) and an individual's fitness based adaptive QEA. A solid demonstration was provided that the proposed HD-QEA is better than the other two algorithms in terms of the convergence speed and the global optimization capability when they are employed to optimize the network coding resources in multicast networks. 展开更多
关键词 network coding quantum-inspired evolutionary algorithm Hamming distance multicast network
原文传递
Novel quantum-inspired firefly algorithm for optimal power quality monitor placement 被引量:1
20
作者 Ling Ai WONG Hussain SHAREEF Azah MOHAMED Ahmad Asrul IBRAHIM 《Frontiers in Energy》 SCIE CSCD 2014年第2期254-260,共7页
The application of a quantum-inspired firefly algorithm was introduced to obtain optimal power quality monitor placement in a power system. The conventional binary firefly algorithm was modified by using quantum princ... The application of a quantum-inspired firefly algorithm was introduced to obtain optimal power quality monitor placement in a power system. The conventional binary firefly algorithm was modified by using quantum principles to attain a faster convergence rate that can improve system performance and to avoid premature convergence. In the optimization process, a multi-objective function was used with the system observability constraint, which is determined via the topological monitor reach area concept. The multi-objective function comprises three functions: number of required monitors, monitor over-lapping index, and sag severity index. The effectiveness of the proposed method was verified by applying the algorithm to an IEEE 118-bus transmission system and by comparing the algorithm with others of its kind. 展开更多
关键词 quantum-inspired binary firefly algorithm topological monitor reach area power quality
原文传递
上一页 1 2 23 下一页 到第
使用帮助 返回顶部