A scheme of synchronized injection multi-quantum-well (MQW) laser system using optical couphng-feedback is presented for performing chaotic dual-directional secure communication. The performance characterization of ...A scheme of synchronized injection multi-quantum-well (MQW) laser system using optical couphng-feedback is presented for performing chaotic dual-directional secure communication. The performance characterization of chaos masking is investigated theoretically, the equation of synchronization demodulation is deduced and its root is also given. Chaos masking encoding with a rate of 5 Gbit/s and a modulation frequency of 1 GHz, chaos modulation with a rate of 0.2 Gbit/s and a modulation frequency of 0.2 GHz and chaos shifting key with a rate of 0.2 Gbit/s are numerically simulated, separately. The ratio of the signal to the absolute synchronous error and the time for achieving synchronous demodulation are analysed in detail. The results illustrate that the system has stronger privacy and good performances so that it can be applied in chaotic dual-directional high rate secure communications.展开更多
A high power GaSb-based laser diode with lasing wavelength at 2 μm was fabricated and optimized. With the optimized epitaxial laser structure, the internal loss and the threshold current density decreased and the int...A high power GaSb-based laser diode with lasing wavelength at 2 μm was fabricated and optimized. With the optimized epitaxial laser structure, the internal loss and the threshold current density decreased and the internal quantum efficiency increased. For uncoated broad-area lasers, the threshold current density was as low as 144 A/cm2 (72 A/cm^2 per quantum well), and the slope efficiency was 0.2 W/A. The internal loss was 11 cm^-1 and the internal quantum efficiency was 27.1%. The maximum output power of 357 mW under continuous-wave operation at room temperature was achieved. The electrical and optical properties of the laser diode were improved.展开更多
Abstract We study dynamics in two mutually coupling multi-quantum-well lasers. We carry out theoretical and numerical analysis of synchronization, anti-synchronization, in-phase locking in the two identical lasers but...Abstract We study dynamics in two mutually coupling multi-quantum-well lasers. We carry out theoretical and numerical analysis of synchronization, anti-synchronization, in-phase locking in the two identical lasers but detuning, in detain. It is proved that the coupling level determines stability of the lasers by analyzing the eigenvalue equation. Critical case of locking is discussed via the phase difference equation. Quasi-period and stable states in the two lasers are investigated via varying the current, detuning and coupling level.展开更多
We fabricate 1.5 μm InGaAsP/InP tunnel injection multiple?quantum-well (TI-MQW) Fabry-Perot (F-P) ridge lasers. The laser heterostructures, including an inner cladding layer and an InP tunnel barrier layer, are ...We fabricate 1.5 μm InGaAsP/InP tunnel injection multiple?quantum-well (TI-MQW) Fabry-Perot (F-P) ridge lasers. The laser heterostructures, including an inner cladding layer and an InP tunnel barrier layer, are grown by metal-organic chemical-vapor deposition (MOCVD). Characteristic temperature T0 of 160 K at 20°C is obtained for 500?μm?long lasers. T0 is measured as high as 88 K in the temperature range of 15?75°C. Cavity length dependence of T0 is investigated.展开更多
Optical properties of graded InGaN/GaN quantum well(QW)lasers are analyzed as improved gain media for laser diodes emitting near 500 nm.These results are compared with those of conventional InGaN/GaN QW structures.The...Optical properties of graded InGaN/GaN quantum well(QW)lasers are analyzed as improved gain media for laser diodes emitting near 500 nm.These results are compared with those of conventional InGaN/GaN QW structures.The heavy-hole effective mass around the topmost valence band is found to nearly not be affected by the inclusion of the graded layer.The graded InGaN/GaN QW structure shows a much larger matrix element than the conventional InGaN/GaN QW structure.The radiative current density dependences of the optical gain are similar to each other.However,the graded QW structure is expected to have lower threshold current density than the conventional QW structure because the former has a lower threshold carrier density than the latter.展开更多
GaInNAs/GaAs single-quantum-well(SQW)lasers have been grown by solid-source molecular beam epitaxy.N is introduced by a home-made dc-active plasma source.Incorporation of N into InGaAs decreases the bandgap significan...GaInNAs/GaAs single-quantum-well(SQW)lasers have been grown by solid-source molecular beam epitaxy.N is introduced by a home-made dc-active plasma source.Incorporation of N into InGaAs decreases the bandgap significantly.The highest N concentration of 2.6%in GaInNAs/GaAs QW is obtained,corresponding to the photoluminescence(PL)peak wavelength of 1.57μm at 10 K.The PL peak intensity decreases rapidly and the PL full width at half maximum increases with the increasing N concentrations.Rapid thermal annealing at 850℃ could significantly improve the crystal quality of the QWs.An optimum annealing time of 5s at 850℃ was obtained.The GaInNAs/GaAs SQW laser emitting at 1.2μm exhibits a high characteristic temperature of 115 K in the temperature range of 20℃-75℃.展开更多
Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling wi...Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of lo...Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.展开更多
Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers r...Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.展开更多
Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% ...Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% and the well width of 6 8nm.The full-width at half-maximum of the PL peak is 22meV,indicating a good quality.InGaAs/GaAs QW ridge-waveguide lasers with emission wavelength of 1120nm are demonstrated.For 100-μm-wide ridge-waveguide lasers with a cavity length of 800μm,the kink-free output power up to 200mW is achieved with the slope efficiency of 0 84mW/mA under the continue-wave operation.For 10μm-wide ridge-waveguide lasers,the lowest threshold current density of 450A/cm2 and the characteristic temperature of 90K are obtained.展开更多
Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping appro...Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.展开更多
We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge l...We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.展开更多
Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(...Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.展开更多
In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power a...In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.展开更多
We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)A...We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.展开更多
The quantum well (QW) semiconductor lasers have become main optical sources for optical fibre communication systems because of their higher modulation speed, broader modulation bandwidth and better temperature chara...The quantum well (QW) semiconductor lasers have become main optical sources for optical fibre communication systems because of their higher modulation speed, broader modulation bandwidth and better temperature characteristics. In order to improve the quality of direct-modulation by means of the stochastic resonance (SR) mechanism in QW semiconductor lasers, we investigate the behaviour of the SR in dlrect-modulated QW semiconductor laser systems. Considering the cross-correlated carrier noise and photon noise, we calculate the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated laser system by using the linear approximation method. The results indicate that the SR always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity.展开更多
This paper presents an SG-DBR with a monolithically integrated SOA fabricated using quantum-well intermixing (QWI) for the first time in China's Mainland. The wavelength tuning range covers 33nm and the output p...This paper presents an SG-DBR with a monolithically integrated SOA fabricated using quantum-well intermixing (QWI) for the first time in China's Mainland. The wavelength tuning range covers 33nm and the output power reaches 10mW with an SOA current of 50mA. The device can work at available channels with SMSR over 35dB.展开更多
Since the first laser was invented,the pursuit of high-energy lasers(HELs)has always been enthusiastic.The first revolution of HELs was pushed by the fusion of laser and aerospace in the 1960s,with the chemical rocket...Since the first laser was invented,the pursuit of high-energy lasers(HELs)has always been enthusiastic.The first revolution of HELs was pushed by the fusion of laser and aerospace in the 1960s,with the chemical rocket engines giving fresh impetus to the birth of gas flow and chemical lasers,which finally turned megawatt lasers from dream into reality.Nowadays,the development of HELs has entered the age of electricity as well as the rocket engines.The properties of current electric rocket engines are highly consistent with HELs’goals,including electrical driving,effective heat dissipation,little medium consumption and extremely light weight and size,which inspired a second fusion of laser and aerospace and motivated the exploration for potential HELs.As an exploratory attempt,a new configuration of diode pumped metastable rare gas laser was demonstrated,with the gain generator resembling an electric rocket-engine for improved power scaling ability.展开更多
Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,an...Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,and wearable electronics,the size of LEDs must be reduced to the micro-scale.Thus,traditional technology cannot meet the demand during the processing of micro-LEDs.Recently,lasers with short-duration pulses have attracted attention because of their unique advantages during micro-LED processing such as noncontact processing,adjustable energy and speed of the laser beam,no cutting force acting on the devices,high efficiency,and low cost.Herein,we review the techniques and principles of laser-based technologies for micro-LED displays,including chip dicing,geometry shaping,annealing,laserassisted bonding,laser lift-off,defect detection,laser repair,mass transfer,and optimization of quantum dot color conversion films.Moreover,the future prospects and challenges of laser-based techniques for micro-LED displays are discussed.展开更多
文摘A scheme of synchronized injection multi-quantum-well (MQW) laser system using optical couphng-feedback is presented for performing chaotic dual-directional secure communication. The performance characterization of chaos masking is investigated theoretically, the equation of synchronization demodulation is deduced and its root is also given. Chaos masking encoding with a rate of 5 Gbit/s and a modulation frequency of 1 GHz, chaos modulation with a rate of 0.2 Gbit/s and a modulation frequency of 0.2 GHz and chaos shifting key with a rate of 0.2 Gbit/s are numerically simulated, separately. The ratio of the signal to the absolute synchronous error and the time for achieving synchronous demodulation are analysed in detail. The results illustrate that the system has stronger privacy and good performances so that it can be applied in chaotic dual-directional high rate secure communications.
基金supported by the Beijing Natural Science Foundation, China (Grant No. 4112058)
文摘A high power GaSb-based laser diode with lasing wavelength at 2 μm was fabricated and optimized. With the optimized epitaxial laser structure, the internal loss and the threshold current density decreased and the internal quantum efficiency increased. For uncoated broad-area lasers, the threshold current density was as low as 144 A/cm2 (72 A/cm^2 per quantum well), and the slope efficiency was 0.2 W/A. The internal loss was 11 cm^-1 and the internal quantum efficiency was 27.1%. The maximum output power of 357 mW under continuous-wave operation at room temperature was achieved. The electrical and optical properties of the laser diode were improved.
文摘Abstract We study dynamics in two mutually coupling multi-quantum-well lasers. We carry out theoretical and numerical analysis of synchronization, anti-synchronization, in-phase locking in the two identical lasers but detuning, in detain. It is proved that the coupling level determines stability of the lasers by analyzing the eigenvalue equation. Critical case of locking is discussed via the phase difference equation. Quasi-period and stable states in the two lasers are investigated via varying the current, detuning and coupling level.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60736036, 60706009, 60777021 and 60702006, the National Basic Research Program of China under Grant Nos 2006CB604901 and 2006CB604902, and the National High-Tech Research and Development Program of China under Grant No 2007AA03Z419, 2007AA03Z417 and 2009AA03Z442.
文摘We fabricate 1.5 μm InGaAsP/InP tunnel injection multiple?quantum-well (TI-MQW) Fabry-Perot (F-P) ridge lasers. The laser heterostructures, including an inner cladding layer and an InP tunnel barrier layer, are grown by metal-organic chemical-vapor deposition (MOCVD). Characteristic temperature T0 of 160 K at 20°C is obtained for 500?μm?long lasers. T0 is measured as high as 88 K in the temperature range of 15?75°C. Cavity length dependence of T0 is investigated.
基金by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(2009-0071446).
文摘Optical properties of graded InGaN/GaN quantum well(QW)lasers are analyzed as improved gain media for laser diodes emitting near 500 nm.These results are compared with those of conventional InGaN/GaN QW structures.The heavy-hole effective mass around the topmost valence band is found to nearly not be affected by the inclusion of the graded layer.The graded InGaN/GaN QW structure shows a much larger matrix element than the conventional InGaN/GaN QW structure.The radiative current density dependences of the optical gain are similar to each other.However,the graded QW structure is expected to have lower threshold current density than the conventional QW structure because the former has a lower threshold carrier density than the latter.
基金Supported by the Major State Basic Research Program under Grant No.G2000036603the National Natural Science Foundation of China under Grant Nos.69896260 and 69988005.
文摘GaInNAs/GaAs single-quantum-well(SQW)lasers have been grown by solid-source molecular beam epitaxy.N is introduced by a home-made dc-active plasma source.Incorporation of N into InGaAs decreases the bandgap significantly.The highest N concentration of 2.6%in GaInNAs/GaAs QW is obtained,corresponding to the photoluminescence(PL)peak wavelength of 1.57μm at 10 K.The PL peak intensity decreases rapidly and the PL full width at half maximum increases with the increasing N concentrations.Rapid thermal annealing at 850℃ could significantly improve the crystal quality of the QWs.An optimum annealing time of 5s at 850℃ was obtained.The GaInNAs/GaAs SQW laser emitting at 1.2μm exhibits a high characteristic temperature of 115 K in the temperature range of 20℃-75℃.
基金supported by the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.787539)funding from EPRSC(Grant Nos.EP/E035728,EP/C003586,and EP/P010059/1)supported by the National Sciences and Engineering Research Council of Canada(NSERC)and Compute Canada(Job:pve-323-ac,PA).
文摘Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金supported by the Czech Academy of Sciences(Mobility Plus Project No.CNRS-23-12)A.M.F.was supported by the Russian Science Foundation(Grant No.20-12-00077).
文摘Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11621404,11561121003,11727812,61775059,12074122,62022033,and 11704123)Shanghai Rising-Star Program,the Sustainedly Supported Foundation by the National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKT2022KL504008)+1 种基金Shanghai Natural Science Foundation(Grant No.23ZR1419000)the National Key Laboratory Foundation of China(Grant No.6142411196307).
文摘Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.
文摘Highly stained InGaAs/GaAs Quantum Wells (QW) are grown by using molecular beam epitaxy.The room-temperature photoluminescence (PL) peak wavelength as long as 1160nm is obtained from QW with the In composition of 38% and the well width of 6 8nm.The full-width at half-maximum of the PL peak is 22meV,indicating a good quality.InGaAs/GaAs QW ridge-waveguide lasers with emission wavelength of 1120nm are demonstrated.For 100-μm-wide ridge-waveguide lasers with a cavity length of 800μm,the kink-free output power up to 200mW is achieved with the slope efficiency of 0 84mW/mA under the continue-wave operation.For 10μm-wide ridge-waveguide lasers,the lowest threshold current density of 450A/cm2 and the characteristic temperature of 90K are obtained.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)the National Natural Science Foundation of China(Grant Nos.11920101004,11934002,and 92365208)+1 种基金Science and Technology Major Project of Shanxi(Grant No.202101030201022)Space Application System of China Manned Space Program.
文摘Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.
基金funded by National Natural Science Foundation of China, grant numbers 62335006, 62274014, 62235016, 61734006, 61835011, 61991430funded by Key Program of the Chinese Academy of Sciences, grant numbers XDB43000000, QYZDJSSW-JSC027Beijing Municipal Science & Technology Commission, grant number Z221100002722018
文摘We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.
基金This work was supported by the National Natural Science Foundation of China(Nos.12122501,11975037,61631001,and 11921006)the National Grand Instrument Project(Nos.2019YFF01014400,2019YFF01014404)the Foundation of Science and Technology on Plasma Physics Laboratory(No.6142A04220108).
文摘Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.
基金Supported by National Key R&D Project(2017YFB0405100)National Natural Science Foundation of China(61774024/61964007)Jilin province science and technology development plan(20190302007GX)。
文摘In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.
基金Supported by the National Natural Science Foundation of China(12393830)。
文摘We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.
基金Supported by the National Natural Science Foundation of China under Grant No 10275025.
文摘The quantum well (QW) semiconductor lasers have become main optical sources for optical fibre communication systems because of their higher modulation speed, broader modulation bandwidth and better temperature characteristics. In order to improve the quality of direct-modulation by means of the stochastic resonance (SR) mechanism in QW semiconductor lasers, we investigate the behaviour of the SR in dlrect-modulated QW semiconductor laser systems. Considering the cross-correlated carrier noise and photon noise, we calculate the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated laser system by using the linear approximation method. The results indicate that the SR always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity.
基金the National Natural Science Foundation of China(Nos.90401025,60736036,60706009,60777021)the State Key Development Program for Basic Research of China(Nos.2006CB604901,2006CB604902)the National High Technology Research and Development Program of China(Nos.2006AA01Z256,2007AA03Z419,2007AA03Z417)~~
文摘This paper presents an SG-DBR with a monolithically integrated SOA fabricated using quantum-well intermixing (QWI) for the first time in China's Mainland. The wavelength tuning range covers 33nm and the output power reaches 10mW with an SOA current of 50mA. The device can work at available channels with SMSR over 35dB.
文摘Since the first laser was invented,the pursuit of high-energy lasers(HELs)has always been enthusiastic.The first revolution of HELs was pushed by the fusion of laser and aerospace in the 1960s,with the chemical rocket engines giving fresh impetus to the birth of gas flow and chemical lasers,which finally turned megawatt lasers from dream into reality.Nowadays,the development of HELs has entered the age of electricity as well as the rocket engines.The properties of current electric rocket engines are highly consistent with HELs’goals,including electrical driving,effective heat dissipation,little medium consumption and extremely light weight and size,which inspired a second fusion of laser and aerospace and motivated the exploration for potential HELs.As an exploratory attempt,a new configuration of diode pumped metastable rare gas laser was demonstrated,with the gain generator resembling an electric rocket-engine for improved power scaling ability.
基金supports from National Natural Science Foundation of China (62274138,11904302)Natural Science Foundation of Fujian Province of China (2023J06012)+2 种基金Science and Technology Plan Project in Fujian Province of China (2021H0011)Fujian Province Central Guidance Local Science and Technology Development Fund Project In 2022 (2022L3058)Compound semiconductor technology Collaborative Innovation Platform project of FuXiaQuan National Independent Innovation Demonstration Zone (3502ZCQXT2022005)。
文摘Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,and wearable electronics,the size of LEDs must be reduced to the micro-scale.Thus,traditional technology cannot meet the demand during the processing of micro-LEDs.Recently,lasers with short-duration pulses have attracted attention because of their unique advantages during micro-LED processing such as noncontact processing,adjustable energy and speed of the laser beam,no cutting force acting on the devices,high efficiency,and low cost.Herein,we review the techniques and principles of laser-based technologies for micro-LED displays,including chip dicing,geometry shaping,annealing,laserassisted bonding,laser lift-off,defect detection,laser repair,mass transfer,and optimization of quantum dot color conversion films.Moreover,the future prospects and challenges of laser-based techniques for micro-LED displays are discussed.