Constituent quark mass model is adopted as a tentative one to study the phase transition between two-flavour quark matter and more stable three-flavour quark matter in the core of supernovae. The result shows that the...Constituent quark mass model is adopted as a tentative one to study the phase transition between two-flavour quark matter and more stable three-flavour quark matter in the core of supernovae. The result shows that the transition has a significant influence on the increasing of the core temperature, the neutrino abundance and the neutrino energies, which contributes to the enhancement of the successful probability of supernova explosion. However, the equilibrium values of these parameters (except the temperature) from the constituent quark mass model in this work are slightly bigger than those obtained from the other model. And we find that the constituent quark mass model is also applicable to describing the transition in the supernova core.展开更多
The current quark mass model is adopted to study the phase transition of two-flavor quark matter to more stable three-flavor quark matter in the whole core of a supernova. It shows that the timescale of the process is...The current quark mass model is adopted to study the phase transition of two-flavor quark matter to more stable three-flavor quark matter in the whole core of a supernova. It shows that the timescale of the process is shorter than 10^-8 seconds, that'the u-and d-quark masses can be neglected completely in this model, and that the temperature and the total neutrino energies in the core after the conversion increase nearly by 40% and 20% on the average compared with former results, respectively. The last result can further enhance the probability of success for a supernova explosion significantly.展开更多
The effect of quark interactions perturbatively to order αc on the conversion, from quark matter to strange quark matter, is studied systematically based on a recent set of current quark masses. The process has a sig...The effect of quark interactions perturbatively to order αc on the conversion, from quark matter to strange quark matter, is studied systematically based on a recent set of current quark masses. The process has a significant effect on increasing the core temperature, the neutrino abundance and the neutrino energies even if there is no quark interaction. Furthermore, with the switch of the strong interaction among quarks, these quantities will increase respectively to some further extents with αc increase. Taking αc = 0.47 as an example, the temperature, the neutrino abundance and the total neutrino energies are further raised by about 10%, 7%, and 20% respectively, which is weakly dependent on the initial temperature. Combining the effect of the current quark mass and the effect of the quark strong interaction, the results of the conversions will greatly enhance the probability of success for a supernova explosion and deeply influence the dynamics of the supernova evolution.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10347008)the Scientific Research and Fund of Sichuan Provincial Education Department (Grant No.2006A079)the Science and Technological Foundation of China West Normal University
文摘Constituent quark mass model is adopted as a tentative one to study the phase transition between two-flavour quark matter and more stable three-flavour quark matter in the core of supernovae. The result shows that the transition has a significant influence on the increasing of the core temperature, the neutrino abundance and the neutrino energies, which contributes to the enhancement of the successful probability of supernova explosion. However, the equilibrium values of these parameters (except the temperature) from the constituent quark mass model in this work are slightly bigger than those obtained from the other model. And we find that the constituent quark mass model is also applicable to describing the transition in the supernova core.
基金National Natural Science Foundation of China(10347008)Key Scientific Research Fund of Sichuan Provincial Education Department(2006A079)Science and Technology Foundation of China West Normal University
文摘The current quark mass model is adopted to study the phase transition of two-flavor quark matter to more stable three-flavor quark matter in the whole core of a supernova. It shows that the timescale of the process is shorter than 10^-8 seconds, that'the u-and d-quark masses can be neglected completely in this model, and that the temperature and the total neutrino energies in the core after the conversion increase nearly by 40% and 20% on the average compared with former results, respectively. The last result can further enhance the probability of success for a supernova explosion significantly.
基金the National Natural Science Foundation of China under Grant No.10778719the Scientific Research Fund of the Education Department of Sichuan Province under Grant No.2006A079Science and Technological Foundation of West Normal University
文摘The effect of quark interactions perturbatively to order αc on the conversion, from quark matter to strange quark matter, is studied systematically based on a recent set of current quark masses. The process has a significant effect on increasing the core temperature, the neutrino abundance and the neutrino energies even if there is no quark interaction. Furthermore, with the switch of the strong interaction among quarks, these quantities will increase respectively to some further extents with αc increase. Taking αc = 0.47 as an example, the temperature, the neutrino abundance and the total neutrino energies are further raised by about 10%, 7%, and 20% respectively, which is weakly dependent on the initial temperature. Combining the effect of the current quark mass and the effect of the quark strong interaction, the results of the conversions will greatly enhance the probability of success for a supernova explosion and deeply influence the dynamics of the supernova evolution.