We analyze the optical light curve data,obtained with the Zwicky Transient Facility(ZTF)survey,for 47 γ-ray blazars monitored by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope(Fermi).These 47sou...We analyze the optical light curve data,obtained with the Zwicky Transient Facility(ZTF)survey,for 47 γ-ray blazars monitored by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope(Fermi).These 47sources are selected because they are among the Fermi blazars with the largest optical variations in the ZTF data.Two color-magnitude variation patterns are seen in them,with one being redder-to-stable-when-brighter(RSWB;in 31 sources)and the other being stable when brighter(in 16 sources).The patterns fit with the results recently reported in several similar studies with different data.Moreover,we find that the colors in the stable state of the sources share similar values,for which(after being corrected for the Galactic extinction)most sources are in a range of 0.4–0.55.This feature could be intrinsic and may be applied in,for example,study of the intragalactic medium.We also determine the turning points for the sources showing the RSWB pattern,after which the color changes saturate and become stable.We find a correlation between optical fluxes and γ-ray fluxes at the turning points.The physical implications of the correlation remain to be investigated,probably better with a sample of high-qualityγ-ray flux measurements.展开更多
We present periodicity search analyses on long-term radio light curves at 4.8,8,and 14.5 GHz of blazar PKS 0607–157 observed by the University of Michigan Radio Astronomical Observatory telescope.The highly variable ...We present periodicity search analyses on long-term radio light curves at 4.8,8,and 14.5 GHz of blazar PKS 0607–157 observed by the University of Michigan Radio Astronomical Observatory telescope.The highly variable radio emissions are approximately distributed as a log-normal probability distribution function.The Power Spectral Density for the radio light curves can be well characterized by a power-law model.Using the Weighted Wavelet Z-transform and Lomb-Scargle periodogram methods,significant Quasi-periodic Oscillation(QPO)of∼4.6 yr in the radio light curve has been observed above the 3σconfidence level,which presents an interesting case among blazar QPO phenomena.We explore three plausible physical models to explain the observed QPOs:a supermassive binary black hole system,Lense-Thirring precession of the disk,and helical motion of plasma blobs within the jet.展开更多
3C 66A is one of our first batches of photometric monitoring objects with the 1 m optical telescope at Yunnan University Astronomical Observatory.In the present work,the observational campaign was performed from 2021 ...3C 66A is one of our first batches of photometric monitoring objects with the 1 m optical telescope at Yunnan University Astronomical Observatory.In the present work,the observational campaign was performed from 2021 November 1 to 2022 February 27 in the Johnson-Morgan system V and R bands.The average magnitudes in each band were■=15.52±0.18 mag and■=15.07±0.17 mag.The overall variability amplitudes wereΔV=■,Amp=70.27%andΔR=■,Amp=68.56%,respectively.Most of the intraday variabilities(IDVs)occurred in 2021 December and 2022 February.The minimal rise/decay timescale was about 6 minutes(5.82±2.74 minutes and 6.18±2.81 minutes on 2022 February 11,6.99±3.70 minutes and 6.17±2.91 minutes on 2022 February 12).Durations of these rapid variabilities were from 11.99 to 179.67 minutes.The discrete correlation function analyses between V and R bands showed significantly correlated variability.Color index analysis of ID Vs showed that the spectrums do not change with variabilities.展开更多
We report on our correlation analysis for theγ-ray blazars detected with the Large Area Telescope(LAT)onboard the Fermi Gamma-ray Space Telescope(Fermi),for which we use the Fermi-LAT data and the optical zr and zg b...We report on our correlation analysis for theγ-ray blazars detected with the Large Area Telescope(LAT)onboard the Fermi Gamma-ray Space Telescope(Fermi),for which we use the Fermi-LAT data and the optical zr and zg band data from the Zwicky Transient Facility survey in the time period approximately from 2018 July to 2022February.We start from the full sample of the Fermi-LAT blazars and find~38%of them as significant variables in bothγ-ray and optical bands.Among the variables,which are 705 blazars,95 are selected as our targets based on the requirement for theγ-ray brightnesses.Then 15 out of the 95 blazars are found to show theγ-ray-optical correlations in the~3.7 yr time period.Most of the 15 blazars are classified as low synchrotron peaked(LSP)ones with the time lags between theγ-ray and optical bands in a range from-19 to+25 days.The results generally fit the often-considered emission scenario for the LSP blazars.Two cases of showing~-100 days time lags are discussed,which require farther studies for confirmation.Our analysis results suggest that among the detected significant variables,~23%LSPs can showγ-ray and optical correlations,while their averageγ-ray fluxes are above~4×10^(-8)photon cm^(-2)s^(-1).展开更多
Fermi-LAT LCR provides continuous and regularly sampled gamma-ray light curves, spanning about 14 yr, for a large sample of blazars. The log-normal flux distribution and linear rms–flux relation of the light curves f...Fermi-LAT LCR provides continuous and regularly sampled gamma-ray light curves, spanning about 14 yr, for a large sample of blazars. The log-normal flux distribution and linear rms–flux relation of the light curves for a few Fermi blazars have been examined in previous studies. However, the probability that blazars exhibit the log-normal flux distribution and linear rms–flux relation in their gamma-ray light curves has not been systematically explored.In this study, we comprehensively research the distribution of γ-ray flux and the statistical characteristics on a large sample of 1414 variable blazars from the Fermi-LAT LCR catalog, including 572 FSRQs, 477 BL Lacs, and 365BCUs, and statistically compare their flux distributions with normal and log-normal distributions. The results indicate that the probability of not rejecting log-normal is 42.05% for the large sample, and there is still a 2.05%probability of not rejecting normality, based on the joint of Kolmogorov–Smirnov, Shapiro–Wilk, and Normality tests. We further find that the probability that BL Lacs conform to the log-normal distribution is higher than that of FSRQs. Besides, after removing sources with less than 200 data points from this large sample, a sample of 549blazars, which is still a large sample compared to the previous studies, was obtained. Based on dividing the light curves into segments every 20 points(or 40 points, or one year), we fitted the linear rms–flux relation of these three different sets and found that the Pearson correlation coefficients are all close to 1 for most blazars. This result indicates a strong linear correlation between the rms and the flux of these 549 blazars. The log-normal distribution and linear rms–flux relation indicate that the variability of the γ-ray flux for most blazars is a non-linear and multiplicative process.展开更多
We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope s...We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope source catalog as unidentified ones.We find that the sources all showedγ-ray flux variations in recent years.Using different survey catalogs,we are able to find a radio source within the error circle of each source's position.Further analysis of optical sources in the fields allows us to determine the optical counterparts,which showed similar variation patterns to those seen inγ-rays.The optical counterparts have reported redshifts of 0.6,1.5,and 2.3,respectively,estimated from photometric measurements.In addition,we also obtain an X-ray spectrum of 4FGL J0502.6+0036 and a flux upper limit on the X-ray emission of 4FGL J1055.9+6507 by analyzing the archival data.The broadband spectral energy distributions of the three sources from radio toγ-rays are constructed.Comparing mainly theγ-ray properties of the three sources with those of different sub-classes of AGNs,we tentatively identify them as blazars.Followup optical spectroscopy is highly warranted for obtaining their spectral features and thus verifying the identification.展开更多
PKS 2155-304 is a well studied BL Lac object in the southern sky. The historical optical data during different periods have been collected and compiled. Light curves spanning 35 yr have been constructed. The R-band li...PKS 2155-304 is a well studied BL Lac object in the southern sky. The historical optical data during different periods have been collected and compiled. Light curves spanning 35 yr have been constructed. The R-band light curve has been ana- lyzed by means of three methods: the epoch folding method, the Jurkevich method and the discrete correlation function method. It is derived that there is an evident periodic component of 317 d (i.e. 0.87 yr) superposed on a long-term trend with large- amplitude variation in the light curve. The variability of this source is accompanied by a slight color variation, and the brightness and color index are correlated with each other. On a long-term time scale, PKS 2155-304 exhibits a tendency of bluer-when- brighter, which means the spectrum becomes flatter when the source brightens.展开更多
The method used in our previous papers is adopted to estimate four basic parameters (the central black hole mass (M), the boosting factor (or Doppler factor) (6), the propagation angle (Φ) and the distance a...The method used in our previous papers is adopted to estimate four basic parameters (the central black hole mass (M), the boosting factor (or Doppler factor) (6), the propagation angle (Φ) and the distance along the axis to the site of the γ-ray production (d)) for 59 γ-ray loud blazars (20 BL Lacertae objects and 39 flat spectrum radio quasars). The central black hole masses estimated for this sample are in a range of from 107 Me to 109 MG. In the case of black hole mass, there is no clear difference between BL Lacertae objects and flat spectrum radio quasars, which is consistent with the previous results suggesting that the central black hole masses do not play an important role in the evolutionary sequence of blazars.展开更多
基金supported by the National Science Foundation under Grant No.AST-2034437 and a collaboration including Caltech,IPACsupported by the Basic Research Program of Yunnan Province(No.202201AS070005)+2 种基金the National Natural Science Foundation of China(NSFC,grant No.12273033)the Original Innovation Program of the Chinese Academy of Sciences(E085021002)the support of the science research program for graduate students of Yunnan University(KC-23234629)。
文摘We analyze the optical light curve data,obtained with the Zwicky Transient Facility(ZTF)survey,for 47 γ-ray blazars monitored by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope(Fermi).These 47sources are selected because they are among the Fermi blazars with the largest optical variations in the ZTF data.Two color-magnitude variation patterns are seen in them,with one being redder-to-stable-when-brighter(RSWB;in 31 sources)and the other being stable when brighter(in 16 sources).The patterns fit with the results recently reported in several similar studies with different data.Moreover,we find that the colors in the stable state of the sources share similar values,for which(after being corrected for the Galactic extinction)most sources are in a range of 0.4–0.55.This feature could be intrinsic and may be applied in,for example,study of the intragalactic medium.We also determine the turning points for the sources showing the RSWB pattern,after which the color changes saturate and become stable.We find a correlation between optical fluxes and γ-ray fluxes at the turning points.The physical implications of the correlation remain to be investigated,probably better with a sample of high-qualityγ-ray flux measurements.
基金funded by the National Natural Science Foundation of China (NSFC) under No.11903028the support from the “Yunnan Revitalization Talent Support Program” of Yunnan province, China+2 种基金the University of Michigan Radio Astronomy Observatory, which is supported by the University of Michiganby a series of grants from the National Science Foundation, most recently AST-0607523NASA Fermi grants NNX09AU16G, NNX10AP16G, and NNX11AO13G.
文摘We present periodicity search analyses on long-term radio light curves at 4.8,8,and 14.5 GHz of blazar PKS 0607–157 observed by the University of Michigan Radio Astronomical Observatory telescope.The highly variable radio emissions are approximately distributed as a log-normal probability distribution function.The Power Spectral Density for the radio light curves can be well characterized by a power-law model.Using the Weighted Wavelet Z-transform and Lomb-Scargle periodogram methods,significant Quasi-periodic Oscillation(QPO)of∼4.6 yr in the radio light curve has been observed above the 3σconfidence level,which presents an interesting case among blazar QPO phenomena.We explore three plausible physical models to explain the observed QPOs:a supermassive binary black hole system,Lense-Thirring precession of the disk,and helical motion of plasma blobs within the jet.
基金supported by the fund for the Youth Project of Basic Research Program of Yunnan Province (202001BB050012)the Joint Foundation of Department of Science and Technology of Yunnan Province and Yunnan University (202201BF070001-020)funded by the“Yunnan University Development Plan for World-Class Astronomy Discipline”。
文摘3C 66A is one of our first batches of photometric monitoring objects with the 1 m optical telescope at Yunnan University Astronomical Observatory.In the present work,the observational campaign was performed from 2021 November 1 to 2022 February 27 in the Johnson-Morgan system V and R bands.The average magnitudes in each band were■=15.52±0.18 mag and■=15.07±0.17 mag.The overall variability amplitudes wereΔV=■,Amp=70.27%andΔR=■,Amp=68.56%,respectively.Most of the intraday variabilities(IDVs)occurred in 2021 December and 2022 February.The minimal rise/decay timescale was about 6 minutes(5.82±2.74 minutes and 6.18±2.81 minutes on 2022 February 11,6.99±3.70 minutes and 6.17±2.91 minutes on 2022 February 12).Durations of these rapid variabilities were from 11.99 to 179.67 minutes.The discrete correlation function analyses between V and R bands showed significantly correlated variability.Color index analysis of ID Vs showed that the spectrums do not change with variabilities.
基金supported by Basic Research Program of Yunnan Province(No.202201AS070005)the National Natural Science Foundation of China(12273033)the Original Innovation Program of the Chinese Academy of Sciences(E085021002)。
文摘We report on our correlation analysis for theγ-ray blazars detected with the Large Area Telescope(LAT)onboard the Fermi Gamma-ray Space Telescope(Fermi),for which we use the Fermi-LAT data and the optical zr and zg band data from the Zwicky Transient Facility survey in the time period approximately from 2018 July to 2022February.We start from the full sample of the Fermi-LAT blazars and find~38%of them as significant variables in bothγ-ray and optical bands.Among the variables,which are 705 blazars,95 are selected as our targets based on the requirement for theγ-ray brightnesses.Then 15 out of the 95 blazars are found to show theγ-ray-optical correlations in the~3.7 yr time period.Most of the 15 blazars are classified as low synchrotron peaked(LSP)ones with the time lags between theγ-ray and optical bands in a range from-19 to+25 days.The results generally fit the often-considered emission scenario for the LSP blazars.Two cases of showing~-100 days time lags are discussed,which require farther studies for confirmation.Our analysis results suggest that among the detected significant variables,~23%LSPs can showγ-ray and optical correlations,while their averageγ-ray fluxes are above~4×10^(-8)photon cm^(-2)s^(-1).
基金funded by the National Natural Science Foundation of China (grants 12063007 and 11863007)。
文摘Fermi-LAT LCR provides continuous and regularly sampled gamma-ray light curves, spanning about 14 yr, for a large sample of blazars. The log-normal flux distribution and linear rms–flux relation of the light curves for a few Fermi blazars have been examined in previous studies. However, the probability that blazars exhibit the log-normal flux distribution and linear rms–flux relation in their gamma-ray light curves has not been systematically explored.In this study, we comprehensively research the distribution of γ-ray flux and the statistical characteristics on a large sample of 1414 variable blazars from the Fermi-LAT LCR catalog, including 572 FSRQs, 477 BL Lacs, and 365BCUs, and statistically compare their flux distributions with normal and log-normal distributions. The results indicate that the probability of not rejecting log-normal is 42.05% for the large sample, and there is still a 2.05%probability of not rejecting normality, based on the joint of Kolmogorov–Smirnov, Shapiro–Wilk, and Normality tests. We further find that the probability that BL Lacs conform to the log-normal distribution is higher than that of FSRQs. Besides, after removing sources with less than 200 data points from this large sample, a sample of 549blazars, which is still a large sample compared to the previous studies, was obtained. Based on dividing the light curves into segments every 20 points(or 40 points, or one year), we fitted the linear rms–flux relation of these three different sets and found that the Pearson correlation coefficients are all close to 1 for most blazars. This result indicates a strong linear correlation between the rms and the flux of these 549 blazars. The log-normal distribution and linear rms–flux relation indicate that the variability of the γ-ray flux for most blazars is a non-linear and multiplicative process.
基金supported by the Basic Research Program of Yunnan Province(No.202201AS070005)the National Natural Science Foundation of China(NSFC,grant No.12273033)+1 种基金the Original Innovation Program of the Chinese Academy of Sciences(E085021002)support of the science research program for graduate students of Yunnan University(KC-23234629)。
文摘We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope source catalog as unidentified ones.We find that the sources all showedγ-ray flux variations in recent years.Using different survey catalogs,we are able to find a radio source within the error circle of each source's position.Further analysis of optical sources in the fields allows us to determine the optical counterparts,which showed similar variation patterns to those seen inγ-rays.The optical counterparts have reported redshifts of 0.6,1.5,and 2.3,respectively,estimated from photometric measurements.In addition,we also obtain an X-ray spectrum of 4FGL J0502.6+0036 and a flux upper limit on the X-ray emission of 4FGL J1055.9+6507 by analyzing the archival data.The broadband spectral energy distributions of the three sources from radio toγ-rays are constructed.Comparing mainly theγ-ray properties of the three sources with those of different sub-classes of AGNs,we tentatively identify them as blazars.Followup optical spectroscopy is highly warranted for obtaining their spectral features and thus verifying the identification.
基金supported by the National Natural Science Foundation of China (Grant No.11273008)
文摘PKS 2155-304 is a well studied BL Lac object in the southern sky. The historical optical data during different periods have been collected and compiled. Light curves spanning 35 yr have been constructed. The R-band light curve has been ana- lyzed by means of three methods: the epoch folding method, the Jurkevich method and the discrete correlation function method. It is derived that there is an evident periodic component of 317 d (i.e. 0.87 yr) superposed on a long-term trend with large- amplitude variation in the light curve. The variability of this source is accompanied by a slight color variation, and the brightness and color index are correlated with each other. On a long-term time scale, PKS 2155-304 exhibits a tendency of bluer-when- brighter, which means the spectrum becomes flatter when the source brightens.
基金Supported by the National Natural Science Foundation of China.(Nos. 10573005 and 10633010) the 973 project (No. 2007CB815405)
文摘The method used in our previous papers is adopted to estimate four basic parameters (the central black hole mass (M), the boosting factor (or Doppler factor) (6), the propagation angle (Φ) and the distance along the axis to the site of the γ-ray production (d)) for 59 γ-ray loud blazars (20 BL Lacertae objects and 39 flat spectrum radio quasars). The central black hole masses estimated for this sample are in a range of from 107 Me to 109 MG. In the case of black hole mass, there is no clear difference between BL Lacertae objects and flat spectrum radio quasars, which is consistent with the previous results suggesting that the central black hole masses do not play an important role in the evolutionary sequence of blazars.