Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-const...Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots(TDQCRs) comprising rigid-flexible coupling subsegments.Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading,actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length(0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model.展开更多
Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversio...Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.展开更多
In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabric...In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.展开更多
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ...The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.展开更多
The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper...The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.展开更多
The fire hazard of lithium-ion batteries(LIBs)modules is extremely serious due to their high capacity.Moreover,once a battery catches fire,it can easily result in a fire of the entire LIBs modules.In this work,a sandw...The fire hazard of lithium-ion batteries(LIBs)modules is extremely serious due to their high capacity.Moreover,once a battery catches fire,it can easily result in a fire of the entire LIBs modules.In this work,a sandwich structure composite thermal insulation(STI)board(copper//silica dioxide aerogel//copper)with the advantages of low thermal conductivity(0.031 W m-1K-1),low surface radiation emissivity(0.1)and good thermal convection inhibition effect has been designed.The thermal runaway(TR)occurrence time of adjacent LIBs increases from 1384 s to more than 6 h+due to the protection of STI board.No TR propagation occurs within LIBs modules with protect of a STI board when a battery catches fire.The ultra-strong-heat-shielding mechanism of STI board has been revealed.The TR propagation of LIBs modules has been insulated effectively by STI board through reducing the heat transfer of convection,conduction and radiation.The air flow rate between the heater and LIBs and radiant heat absorbed by LIBs decrease by 63.5%and 35.1%with protection of STI board,respectively.A high temperature difference inside the STI board is also formed.This work provides direction for the designing of safe thermal insulation board for LIBs modules.展开更多
The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine ...The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
Let M be a finitely generated free semimodule over a semiring S with identity having invariant basis number property with a basisα={α1,...,αk}.The complement■of the reduced non-zero component graph■of M,is the si...Let M be a finitely generated free semimodule over a semiring S with identity having invariant basis number property with a basisα={α1,...,αk}.The complement■of the reduced non-zero component graph■of M,is the simple undirected graph with■as the vertex set and such that there is an edge between two distinct vertices■and■if and only if there exists no i such that both ai,biare non-zero.In this paper,we show that the graph■is connected and find its domination number,clique number and chromatic number.In the case of finite semirings,we determine the degree of each vertex,order,size,vertex connectivity and girth of■.Also,we give a necessary and sufficient condition for■to be Eulerian or Hamiltonian or planar.展开更多
Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple stake...Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint.展开更多
Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grai...Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grain boundaries produce a pinning atmosphere that exerts a drag pressure on the boundary motion,which strongly affects the grain growth behavior during annealing.In the current work,the characteristics of grain growth in an annealed Mg-1 wt.%Mn-1 wt.%Nd magnesium alloy were investigated by advanced experimental and modeling techniques.Systematic quasi in-situ orientation mappings with a scanning electron microscope were performed to track the evolution of local and global microstructural characteristics as a function of annealing time.Solute segregation at targeted grain boundaries was measured using three-dimensional atom probe tomography.Level-set computer simulations were carried with different setups of driving forces to explore their contribution to the microstructure development with and without solute drag.The results showed that the favorable growth advantage for some grains leading to a transient stage of abnormal grain growth is controlled by several drivers with varying importance at different stages of annealing.For longer annealing times,residual dislocation density gradients between large and smaller grains are no longer important,which leads to microstructure stability due to predominant solute drag.Local fluctuations in residual dislocation energy and solute concentration near grain boundaries cause different boundary segments to migrate at different rates,which affects the average growth rate of large grains and their evolved shape.展开更多
Generally,the field of fixed point theory has attracted the attention of researchers in different fields of science and engineering due to its use in proving the existence and uniqueness of solutions of real-world dyn...Generally,the field of fixed point theory has attracted the attention of researchers in different fields of science and engineering due to its use in proving the existence and uniqueness of solutions of real-world dynamic models.C^(∗)-algebra is being continually used to explain a physical system in quantum field theory and statistical mechanics and has subsequently become an important area of research.The concept of a C^(∗)-algebra-valued metric space was introduced in 2014 to generalize the concept of metric space.In fact,It is a generalization by replacing the set of real numbers with a C^(∗)-algebra.After that,this line of research continued,where several fixed point results have been obtained in the framework of C^(∗)-algebra valued metric,aswell as(more general)C^(∗)-algebra-valued b-metric spaces andC^(∗)-algebra-valued extended b-metric spaces.Very recently,based on the concept and properties of C^(∗)-algebras,we have studied the quasi-case of such spaces to give a more general notion of relaxing the triangular inequality in the asymmetric case.In this paper,we first introduce the concept of C^(∗)-algebra-valued quasi-controlledK-metric spaces and prove some fixed point theorems that remain valid in this setting.To support our main results,we also furnish some exampleswhichdemonstrate theutility of ourmainresult.Finally,as an application,we useour results to prove the existence and uniqueness of the solution to a nonlinear stochastic integral equation.展开更多
Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air.However,scaling up to high-efficiency carbon-based solar modules hinges on reliable dep...Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air.However,scaling up to high-efficiency carbon-based solar modules hinges on reliable deposition of uniform defect-free perovskite films over large areas,which is an unsettled but urgent issue.In this work,a long-chain gemini surfactant is introduced into perovskite precursor ink to enforce self-assembly into a network structure,considerably enhancing the coverage and smoothness of the perovskite films.The long gemini surfactant plays a distinctively synergistic role in perovskite film construction,crystallization kinetics modulation and defect passivation,leading to a certified record power conversion efficiency of 15.46%with Voc of 1.13 V and Jsc of 22.92 mA cm^(-2)for this type of modules.Importantly,all of the functional layers of the module are printed through a simple and high-speed(300 cm min^(-1))blade coating strategy in ambient atmosphere.These results mark a significant step toward the commercialization of all-printable carbon-based perovskite solar modules.展开更多
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
The California bearing ratio (CBR) test is the most widely spread method of determining the bearing strength of the pavement material and is fundamental to pavement design practice in most countries. This test is expe...The California bearing ratio (CBR) test is the most widely spread method of determining the bearing strength of the pavement material and is fundamental to pavement design practice in most countries. This test is expensive, laborious and time consuming, and to overcome this, Quasi static cone penetrometer machine was fabricated and used to measure the consistency limits (liquid limit-LL, Plastic limit-PL and Plasticity index-PI), which were used to develop an empirical equation to determine CBR. Soil samples were collected and unsoaked CBR, PL, LL and PI were determined according to BS 1377 part 9 and BS 1377-2;1990. Quasi static penetration forces at 20 mm depth of penetration were also determined at consistency limits. It was found that the force of 1020 gf and 60 gf was achieved at a depth of 20 mm at PI and LL respectively. The correlation and regression analysis between consistency limits, and the experimental CBR obtained showed coefficient of determination, R<sup>2</sup> = 0.907 between CBR and all the parameters using multiple linear regression analysis (MLRA). The regression equation developed was used together with the relationship developed between the Quasi static Penetration force at consistency limits and the tested consistency limits to come up with the General Empirical Equation. Verification of the formula showed that the correlation can be used accurately to determine the un soaked CBR.展开更多
Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid text...Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid texture, the V-groove texture possesses superior effective minority carrier lifetime, enhanced p–n junction quality and better applied filling factor(FF). In addition, a V-groove texture can greatly reduce the shading area and edge damage of front Ag electrodes when the V-groove direction is parallel to the gridline electrodes. Due to these factors, the V-groove solar cells have a higher efficiency(21.78%) than pyramid solar cells(21.62%). Interestingly, external quantum efficiency(EQE) and reflectance of the V-groove solar cells exhibit a slight decrease when the incident light angle(θ) is increased from 0° to 75°, which confirms the excellent quasi omnidirectionality of the V-groove solar cells. The proposed V-groove solar cell design shows a 2.84% relative enhancement of energy output over traditional pyramid solar cells.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.61973167)the Jiangsu Funding Program for Excellent Postdoctoral Talent。
文摘Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots(TDQCRs) comprising rigid-flexible coupling subsegments.Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading,actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length(0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model.
文摘Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.
基金supported in part by the National Key Research and Development Program of China(2021YFA0716601)the National Science Fund(62225111).
文摘In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.
基金supported by the Key Research and Development Projects in Shaanxi Province(Program No.2021GY-306)the Innovation Capability Support Program of Shaanxi(Program No.2022KJXX-41)the Key Scientific and Technological Projects of Xi’an(Program No.2022JH-RGZN-0005).
文摘The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.
文摘The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.
基金the support from the National Science and Technology Major Project(J2019-VIII-00100171)the National Natural Science Foundation of China(51991352,51973203)+3 种基金the China Postdoctoral Special Funding(2019TQ0309)the China Postdoctoral Science Foundation(2020M671904)the Fundamental Research Funds for the Central Universities(WK2320000057)the University of Synergy Innovation Program of Anhui Province(GXXT-2020-079)。
文摘The fire hazard of lithium-ion batteries(LIBs)modules is extremely serious due to their high capacity.Moreover,once a battery catches fire,it can easily result in a fire of the entire LIBs modules.In this work,a sandwich structure composite thermal insulation(STI)board(copper//silica dioxide aerogel//copper)with the advantages of low thermal conductivity(0.031 W m-1K-1),low surface radiation emissivity(0.1)and good thermal convection inhibition effect has been designed.The thermal runaway(TR)occurrence time of adjacent LIBs increases from 1384 s to more than 6 h+due to the protection of STI board.No TR propagation occurs within LIBs modules with protect of a STI board when a battery catches fire.The ultra-strong-heat-shielding mechanism of STI board has been revealed.The TR propagation of LIBs modules has been insulated effectively by STI board through reducing the heat transfer of convection,conduction and radiation.The air flow rate between the heater and LIBs and radiant heat absorbed by LIBs decrease by 63.5%and 35.1%with protection of STI board,respectively.A high temperature difference inside the STI board is also formed.This work provides direction for the designing of safe thermal insulation board for LIBs modules.
文摘The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
基金supported by CSIR Emeritus Scientist Scheme(21(1123)/20/EMR-II)of Council of Scientific and Industrial Researchthis research is also supported by Dr.M.G.R.Research Scholarship by Manonmaniam Sundaranar University。
文摘Let M be a finitely generated free semimodule over a semiring S with identity having invariant basis number property with a basisα={α1,...,αk}.The complement■of the reduced non-zero component graph■of M,is the simple undirected graph with■as the vertex set and such that there is an edge between two distinct vertices■and■if and only if there exists no i such that both ai,biare non-zero.In this paper,we show that the graph■is connected and find its domination number,clique number and chromatic number.In the case of finite semirings,we determine the degree of each vertex,order,size,vertex connectivity and girth of■.Also,we give a necessary and sufficient condition for■to be Eulerian or Hamiltonian or planar.
基金supported in part by National Key R&D Program of China (2021YFB2500600)CAS Youth multi-discipline project (JCTD-2021-09)Strategic Piority Research Program of Chinese Academy of Sciences (XDA28040100)。
文摘Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint.
基金support of the Deutsche Forschungsgemeinschaft(DFG),Grant no.AL 1343/7–1,AL 1343/8–1,Yi 103/3–1。
文摘Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grain boundaries produce a pinning atmosphere that exerts a drag pressure on the boundary motion,which strongly affects the grain growth behavior during annealing.In the current work,the characteristics of grain growth in an annealed Mg-1 wt.%Mn-1 wt.%Nd magnesium alloy were investigated by advanced experimental and modeling techniques.Systematic quasi in-situ orientation mappings with a scanning electron microscope were performed to track the evolution of local and global microstructural characteristics as a function of annealing time.Solute segregation at targeted grain boundaries was measured using three-dimensional atom probe tomography.Level-set computer simulations were carried with different setups of driving forces to explore their contribution to the microstructure development with and without solute drag.The results showed that the favorable growth advantage for some grains leading to a transient stage of abnormal grain growth is controlled by several drivers with varying importance at different stages of annealing.For longer annealing times,residual dislocation density gradients between large and smaller grains are no longer important,which leads to microstructure stability due to predominant solute drag.Local fluctuations in residual dislocation energy and solute concentration near grain boundaries cause different boundary segments to migrate at different rates,which affects the average growth rate of large grains and their evolved shape.
文摘Generally,the field of fixed point theory has attracted the attention of researchers in different fields of science and engineering due to its use in proving the existence and uniqueness of solutions of real-world dynamic models.C^(∗)-algebra is being continually used to explain a physical system in quantum field theory and statistical mechanics and has subsequently become an important area of research.The concept of a C^(∗)-algebra-valued metric space was introduced in 2014 to generalize the concept of metric space.In fact,It is a generalization by replacing the set of real numbers with a C^(∗)-algebra.After that,this line of research continued,where several fixed point results have been obtained in the framework of C^(∗)-algebra valued metric,aswell as(more general)C^(∗)-algebra-valued b-metric spaces andC^(∗)-algebra-valued extended b-metric spaces.Very recently,based on the concept and properties of C^(∗)-algebras,we have studied the quasi-case of such spaces to give a more general notion of relaxing the triangular inequality in the asymmetric case.In this paper,we first introduce the concept of C^(∗)-algebra-valued quasi-controlledK-metric spaces and prove some fixed point theorems that remain valid in this setting.To support our main results,we also furnish some exampleswhichdemonstrate theutility of ourmainresult.Finally,as an application,we useour results to prove the existence and uniqueness of the solution to a nonlinear stochastic integral equation.
基金supported by the National Natural Science Foundation of China(U2001217,22261160370 and 21972006)Guangdong-Hong Kong-Macao Joint Innovation Foundation(2021A0505110003)+1 种基金Shenzhen Basic Research(JCYJ20220818101018038 and JCYJ20200109110628172)Guangdong Province Regional Joint Innovation Foundation(2020B1515120039)。
文摘Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air.However,scaling up to high-efficiency carbon-based solar modules hinges on reliable deposition of uniform defect-free perovskite films over large areas,which is an unsettled but urgent issue.In this work,a long-chain gemini surfactant is introduced into perovskite precursor ink to enforce self-assembly into a network structure,considerably enhancing the coverage and smoothness of the perovskite films.The long gemini surfactant plays a distinctively synergistic role in perovskite film construction,crystallization kinetics modulation and defect passivation,leading to a certified record power conversion efficiency of 15.46%with Voc of 1.13 V and Jsc of 22.92 mA cm^(-2)for this type of modules.Importantly,all of the functional layers of the module are printed through a simple and high-speed(300 cm min^(-1))blade coating strategy in ambient atmosphere.These results mark a significant step toward the commercialization of all-printable carbon-based perovskite solar modules.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
文摘The California bearing ratio (CBR) test is the most widely spread method of determining the bearing strength of the pavement material and is fundamental to pavement design practice in most countries. This test is expensive, laborious and time consuming, and to overcome this, Quasi static cone penetrometer machine was fabricated and used to measure the consistency limits (liquid limit-LL, Plastic limit-PL and Plasticity index-PI), which were used to develop an empirical equation to determine CBR. Soil samples were collected and unsoaked CBR, PL, LL and PI were determined according to BS 1377 part 9 and BS 1377-2;1990. Quasi static penetration forces at 20 mm depth of penetration were also determined at consistency limits. It was found that the force of 1020 gf and 60 gf was achieved at a depth of 20 mm at PI and LL respectively. The correlation and regression analysis between consistency limits, and the experimental CBR obtained showed coefficient of determination, R<sup>2</sup> = 0.907 between CBR and all the parameters using multiple linear regression analysis (MLRA). The regression equation developed was used together with the relationship developed between the Quasi static Penetration force at consistency limits and the tested consistency limits to come up with the General Empirical Equation. Verification of the formula showed that the correlation can be used accurately to determine the un soaked CBR.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China (Grant No.2021B0101260001)Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515110411)the National Natural Science Foundation of China (Grant No.61904201)。
文摘Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid texture, the V-groove texture possesses superior effective minority carrier lifetime, enhanced p–n junction quality and better applied filling factor(FF). In addition, a V-groove texture can greatly reduce the shading area and edge damage of front Ag electrodes when the V-groove direction is parallel to the gridline electrodes. Due to these factors, the V-groove solar cells have a higher efficiency(21.78%) than pyramid solar cells(21.62%). Interestingly, external quantum efficiency(EQE) and reflectance of the V-groove solar cells exhibit a slight decrease when the incident light angle(θ) is increased from 0° to 75°, which confirms the excellent quasi omnidirectionality of the V-groove solar cells. The proposed V-groove solar cell design shows a 2.84% relative enhancement of energy output over traditional pyramid solar cells.