Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in detai...Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in details.And examples are shown to demonstrate the capacity of the quasi-interpolants for curve representation.展开更多
In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate init...In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate initial and Dirichlet boundary conditions, where h > 0, k > 0 are grid sizes in space and time-directions, respectively. The cubic spline approximation produces at each time level a spline function which may be used to obtain the solution at any point in the range of the space variable. The proposed cubic spline method is applicable to parabolic equations having singularity. The stability analysis for diffusion- convection equation shows the unconditionally stable character of the cubic spline method. The numerical tests are performed and comparative results are provided to illustrate the usefulness of the proposed method.展开更多
In this paper,a new quasi-interpolation with radial basis functions which satis- fies quadratic polynomial reproduction is constructed on the infinite set of equally spaced data.A new basis function is constructed by ...In this paper,a new quasi-interpolation with radial basis functions which satis- fies quadratic polynomial reproduction is constructed on the infinite set of equally spaced data.A new basis function is constructed by making convolution integral with a constructed spline and a given radial basis function.In particular,for twicely differ- entiable function the proposed method provides better approximation and also takes care of derivatives approximation.展开更多
The problem of quick analysis using exact geometry data was proposed by Hughes et al. and the isogeometric analysis framework was introduced as a solution. In this letter, the exact geometry concept is combined into t...The problem of quick analysis using exact geometry data was proposed by Hughes et al. and the isogeometric analysis framework was introduced as a solution. In this letter, the exact geometry concept is combined into the quasi-conforming framework and a novel method, i.e., the exact geometry based quasi-conforming analysis is proposed. In present method the geometry is exactly described by non-uniform rational B-spline bases, while the solution space by traditional polynomial bases. Present method combines the merits of both isogeometric analysis and quasi-conforming finite element method. In this letter Euler-Bernoulli beam problem is solved as an example and the results show that the present method is effective and promising.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
基金Supported by the National Natural Science Foundation of China( 1 9971 0 1 7,1 0 1 2 5 1 0 2 )
文摘Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in details.And examples are shown to demonstrate the capacity of the quasi-interpolants for curve representation.
文摘In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate initial and Dirichlet boundary conditions, where h > 0, k > 0 are grid sizes in space and time-directions, respectively. The cubic spline approximation produces at each time level a spline function which may be used to obtain the solution at any point in the range of the space variable. The proposed cubic spline method is applicable to parabolic equations having singularity. The stability analysis for diffusion- convection equation shows the unconditionally stable character of the cubic spline method. The numerical tests are performed and comparative results are provided to illustrate the usefulness of the proposed method.
文摘In this paper,a new quasi-interpolation with radial basis functions which satis- fies quadratic polynomial reproduction is constructed on the infinite set of equally spaced data.A new basis function is constructed by making convolution integral with a constructed spline and a given radial basis function.In particular,for twicely differ- entiable function the proposed method provides better approximation and also takes care of derivatives approximation.
基金supported by the Key Project of the National Natural Science Foundation of China(10932003,11272075)the National Basic Research Program of China(2010CB832700)"04"Great Project of Ministry of Industrialization and Information of China(2011ZX04001-21)
文摘The problem of quick analysis using exact geometry data was proposed by Hughes et al. and the isogeometric analysis framework was introduced as a solution. In this letter, the exact geometry concept is combined into the quasi-conforming framework and a novel method, i.e., the exact geometry based quasi-conforming analysis is proposed. In present method the geometry is exactly described by non-uniform rational B-spline bases, while the solution space by traditional polynomial bases. Present method combines the merits of both isogeometric analysis and quasi-conforming finite element method. In this letter Euler-Bernoulli beam problem is solved as an example and the results show that the present method is effective and promising.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.