In this study, an in-house quasi dimensional code has been developed which simulates the intake, compression, combustion, expansion and exhaust strokes of a homogeneous charge compression ignition (HCCI) engine. The c...In this study, an in-house quasi dimensional code has been developed which simulates the intake, compression, combustion, expansion and exhaust strokes of a homogeneous charge compression ignition (HCCI) engine. The compressed natural gas (CNG) has been used as fuel. A detailed chemical kineticscheme constituting of 310 and 1701 elementary equations developed by [Bakhshan and al.] has been applied for combustion modeling andheat release calculations. The zero-dimensional k-ε turbulence model has been used for calculation of heat transfer. The output results are the performance and pollutants emission and combustion characteristics in HCCI engines. Parametric studies have been conducted to discussing the effects of various parameters on performance and pollutants emission of these engines.展开更多
A mixed bacterial flora was isolated from the soil of two petroleum-contaminated sites, then cultivated and domesticated in an open environment. The bacteria were used to degrade engine oil in wastewater. The optimum ...A mixed bacterial flora was isolated from the soil of two petroleum-contaminated sites, then cultivated and domesticated in an open environment. The bacteria were used to degrade engine oil in wastewater. The optimum biodegradation conditions for all engine oil concentrations of respectively 489 mg L^-1, 1. 075 mg L^-1 and 2 088 mg L^-1 are bacterial inoculum concentration of 0.1%, temperature at 30 ℃ to 35 ℃, pH 7.0 to 7.5, and rotation at 190 r mia^-1 to 240 r rain^-1. The second-order kinetic model proposed by Quiroga and Sales describes the characteristics of the biodegradation of the engine oil very well. Engine oil concentration barely changes the growth rate of the bacterial consortium. The mixed bacterial flora has a high biodegrading capability for engine oil.展开更多
Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusin...Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusing with regard to granular soils, because it is not associated with an obvious phenomenology. In this study, we built a proper framework, using the second-order work theory, to describe some failure modes in geomaterials based on energy conservation. The occurrence of failure is defined by an abrupt increase in kinetic energy. The increase in kinetic energy from an equilibrium state, under incremental loading, is shown to be equal to the difference between the external second-order work,involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material. When a stress limit state is reached, a certain stress component passes through a maximum value and then may decrease. Under such a condition, if a certain additional external loading is applied, the system fails, sharply increasing the strain rate. The internal stress is no longer able to balance the external stress, leading to a dynamic response of the specimen. As an illustration, the theoretical framework was applied to the well-known undrained triaxial test for loose soils. The influence of the loading control mode was clearly highlighted. It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory. When the plastic limit condition is met, the internal second-order work is nil. A class of incremental external loadings causes the kinetic energy to increase dramatically, leading to the sudden collapse of the specimen, as observed in laboratory.展开更多
We study kinetic models of reversible enzyme reactions and compare two techniques for analytic approximate solutions of the model. Analytic approximate solutions of non-linear reaction equations for reversible enzyme ...We study kinetic models of reversible enzyme reactions and compare two techniques for analytic approximate solutions of the model. Analytic approximate solutions of non-linear reaction equations for reversible enzyme reactions are calculated using the Homotopy Perturbation Method (HPM) and the Simple Iteration Method (SIM). The results of the approximations are similar. The Matlab programs are included in appendices.展开更多
A low molecular mass organogelator(LMOG),N,N’-1,5-pentanediylbis-dodecanamide, was applied to quasi-solid-state dye-sensitized solar cells(QS-DSSCs). The crosslinked gel network was self-assemblied by the LOMG in the...A low molecular mass organogelator(LMOG),N,N’-1,5-pentanediylbis-dodecanamide, was applied to quasi-solid-state dye-sensitized solar cells(QS-DSSCs). The crosslinked gel network was self-assemblied by the LOMG in the liquid electrolyte, and the in situ assembly process of gelator can be obtained by the polarized optical microscopy(POM). On one hand, the network hinders the diffusion of redox species and accelerates the electron recombination at the interface of the TiO_2 photoanode/electrolyte. On the other hand, Li+ can interact with the amide carbonyl groups of the gelators and the adsorption of Li+ onto the TiO_2 surface decreases, leading to a negative shift of the TiO_2 conduction band edge, accelerated electron transport and decreased electron injection efficiency(η_(inj)) of QS-DSSC. As a result, the incidental photon-to-electron conversion efficiency(IPCE),the short circuit photocurrent density(J_(sc)) and the open circuit voltage(V_(oc)) of the QS-DSSC are decreased compared with those of the liquid electrolyte based DSSC(L-DSSC),which indicates that the electron recombination plays a great role in the photovoltaic performances of DSSC. Remarkably,the QS-DSSC exhibits excellent thermal and light-soaking stabilities during accelerated aging tests for 1000 h, which is attributed to a great intrinsic stability of the gel electrolyte with a high gel to solution transition temperature(T_(gel)=108°C).展开更多
文摘In this study, an in-house quasi dimensional code has been developed which simulates the intake, compression, combustion, expansion and exhaust strokes of a homogeneous charge compression ignition (HCCI) engine. The compressed natural gas (CNG) has been used as fuel. A detailed chemical kineticscheme constituting of 310 and 1701 elementary equations developed by [Bakhshan and al.] has been applied for combustion modeling andheat release calculations. The zero-dimensional k-ε turbulence model has been used for calculation of heat transfer. The output results are the performance and pollutants emission and combustion characteristics in HCCI engines. Parametric studies have been conducted to discussing the effects of various parameters on performance and pollutants emission of these engines.
基金Funded by the Natural Science Foundation of China (No.40571145).
文摘A mixed bacterial flora was isolated from the soil of two petroleum-contaminated sites, then cultivated and domesticated in an open environment. The bacteria were used to degrade engine oil in wastewater. The optimum biodegradation conditions for all engine oil concentrations of respectively 489 mg L^-1, 1. 075 mg L^-1 and 2 088 mg L^-1 are bacterial inoculum concentration of 0.1%, temperature at 30 ℃ to 35 ℃, pH 7.0 to 7.5, and rotation at 190 r mia^-1 to 240 r rain^-1. The second-order kinetic model proposed by Quiroga and Sales describes the characteristics of the biodegradation of the engine oil very well. Engine oil concentration barely changes the growth rate of the bacterial consortium. The mixed bacterial flora has a high biodegrading capability for engine oil.
基金the French Research Network Me Ge (Multiscale and Multiphysics Couplings in Geo-environmental Mechanics GDR CNRS 3176/2340, 2008e2015) for having supported this work
文摘Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusing with regard to granular soils, because it is not associated with an obvious phenomenology. In this study, we built a proper framework, using the second-order work theory, to describe some failure modes in geomaterials based on energy conservation. The occurrence of failure is defined by an abrupt increase in kinetic energy. The increase in kinetic energy from an equilibrium state, under incremental loading, is shown to be equal to the difference between the external second-order work,involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material. When a stress limit state is reached, a certain stress component passes through a maximum value and then may decrease. Under such a condition, if a certain additional external loading is applied, the system fails, sharply increasing the strain rate. The internal stress is no longer able to balance the external stress, leading to a dynamic response of the specimen. As an illustration, the theoretical framework was applied to the well-known undrained triaxial test for loose soils. The influence of the loading control mode was clearly highlighted. It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory. When the plastic limit condition is met, the internal second-order work is nil. A class of incremental external loadings causes the kinetic energy to increase dramatically, leading to the sudden collapse of the specimen, as observed in laboratory.
文摘We study kinetic models of reversible enzyme reactions and compare two techniques for analytic approximate solutions of the model. Analytic approximate solutions of non-linear reaction equations for reversible enzyme reactions are calculated using the Homotopy Perturbation Method (HPM) and the Simple Iteration Method (SIM). The results of the approximations are similar. The Matlab programs are included in appendices.
基金supported by the National High Technology Research and Development Program of China(2015AA050602)the National Natural Science Foundation of China(21103197,21403247,61404142 and 21273242)+2 种基金the National Basic Research Programof China(2015CB932200)the project of Scientific and Technological Support Program in Jiangsu province(BE2014147-4)Beijing Municipal Science and Technology Project(Z141100003314003)
文摘A low molecular mass organogelator(LMOG),N,N’-1,5-pentanediylbis-dodecanamide, was applied to quasi-solid-state dye-sensitized solar cells(QS-DSSCs). The crosslinked gel network was self-assemblied by the LOMG in the liquid electrolyte, and the in situ assembly process of gelator can be obtained by the polarized optical microscopy(POM). On one hand, the network hinders the diffusion of redox species and accelerates the electron recombination at the interface of the TiO_2 photoanode/electrolyte. On the other hand, Li+ can interact with the amide carbonyl groups of the gelators and the adsorption of Li+ onto the TiO_2 surface decreases, leading to a negative shift of the TiO_2 conduction band edge, accelerated electron transport and decreased electron injection efficiency(η_(inj)) of QS-DSSC. As a result, the incidental photon-to-electron conversion efficiency(IPCE),the short circuit photocurrent density(J_(sc)) and the open circuit voltage(V_(oc)) of the QS-DSSC are decreased compared with those of the liquid electrolyte based DSSC(L-DSSC),which indicates that the electron recombination plays a great role in the photovoltaic performances of DSSC. Remarkably,the QS-DSSC exhibits excellent thermal and light-soaking stabilities during accelerated aging tests for 1000 h, which is attributed to a great intrinsic stability of the gel electrolyte with a high gel to solution transition temperature(T_(gel)=108°C).