Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteri...Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteristics of a disk spring are analyzed. The dynamic equation of its motion has been obtained based on Newton's second law. After definition of a error margin,the dynamic equation of the motion can be treated as a Duffing oscillator,and the influences of non-dimensional parameters on the stiffness and transmissibility are studied. The natural frequency and transmissibility are achieved in a linearization range,where the ratio of linear to nonlinear items is small enough.The influence of mass ratio and non-dimensional parameters on natural frequency are analyzed. Finally,a comparison of numerical example demonstrates that the QZS system can realize a lower stiffness within an increased range.展开更多
In this paper, an archetypal aseismic system is proposed with 2-degree of freedom based on a smooth and discontinuous(SD)oscillator to avoid the failure of electric power system under the complex excitation of seismic...In this paper, an archetypal aseismic system is proposed with 2-degree of freedom based on a smooth and discontinuous(SD)oscillator to avoid the failure of electric power system under the complex excitation of seismic waves. This model comprises two vibration isolation units for the orthogonal horizontal directions, and each of them admits the stable quasi-zero stiffness(SQZS)with a pair of inclined linear elastic springs. The equation of motion is formulated by using Lagrange equation, and the SQZS condition is obtained by optimizing the parameters of the system. The analysis shows that the system behaves a remarkable vibration isolation performance with low resonant frequency and a large stroke of SQZS interval. The experimental investigations are carried out to show a high sonsistency with the theoretical results, which demonstrates the improvement of aseismic behavior of the proposed model under the seismic wave.展开更多
基金Supported by National Science and Technology Major Project(2013ZX02104003)
文摘Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteristics of a disk spring are analyzed. The dynamic equation of its motion has been obtained based on Newton's second law. After definition of a error margin,the dynamic equation of the motion can be treated as a Duffing oscillator,and the influences of non-dimensional parameters on the stiffness and transmissibility are studied. The natural frequency and transmissibility are achieved in a linearization range,where the ratio of linear to nonlinear items is small enough.The influence of mass ratio and non-dimensional parameters on natural frequency are analyzed. Finally,a comparison of numerical example demonstrates that the QZS system can realize a lower stiffness within an increased range.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.11572096,11732006)
文摘In this paper, an archetypal aseismic system is proposed with 2-degree of freedom based on a smooth and discontinuous(SD)oscillator to avoid the failure of electric power system under the complex excitation of seismic waves. This model comprises two vibration isolation units for the orthogonal horizontal directions, and each of them admits the stable quasi-zero stiffness(SQZS)with a pair of inclined linear elastic springs. The equation of motion is formulated by using Lagrange equation, and the SQZS condition is obtained by optimizing the parameters of the system. The analysis shows that the system behaves a remarkable vibration isolation performance with low resonant frequency and a large stroke of SQZS interval. The experimental investigations are carried out to show a high sonsistency with the theoretical results, which demonstrates the improvement of aseismic behavior of the proposed model under the seismic wave.