Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solv...Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.展开更多
By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic functio...By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.展开更多
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
An extended Jacobian elliptic function expansion method presented recently by us is applied to the mKdVequation such that thirteen families of Jacobian elliptic function solutions including both new solutions and Fu...An extended Jacobian elliptic function expansion method presented recently by us is applied to the mKdVequation such that thirteen families of Jacobian elliptic function solutions including both new solutions and Fu's allresults are obtained. When the modulus m → 1 or 0, we can find the corresponding six solitary wave solutions and sixtrigonometric function solutions. This shows that our method is more powerful to construct more exact Jacobian ellipticfunction solutions and can be applied to other nonlinear differential equations.展开更多
(2 + 1) dimensional Boussinesq and Kadomtsev-Petviashvili equation are investigated by employing Jacobi elliptic function expansion method in this paper. As a result, some new forms traveling wave solutions of the equ...(2 + 1) dimensional Boussinesq and Kadomtsev-Petviashvili equation are investigated by employing Jacobi elliptic function expansion method in this paper. As a result, some new forms traveling wave solutions of the equation are reported. Numerical simulation results are shown. These new solutions may be important for the explanation of some practical physical problems. The results of this paper show that Jacobi elliptic function method can be a useful tool in obtaining evolution solutions of nonlinear system.展开更多
The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the applicat...The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.展开更多
In this paper, two transformations are introduced to solve sinh-Gordon equation by using the knowledge of elliptic equation and Jacobian elliptic functions. It is shown that different transformations are required in o...In this paper, two transformations are introduced to solve sinh-Gordon equation by using the knowledge of elliptic equation and Jacobian elliptic functions. It is shown that different transformations are required in order to obtain more kinds of solutions to the sinh-Gordon equation.展开更多
This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the ...This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the generalized conditional symmetry, we obtain complete classification of those equations which admit functional separable solutions (FSSs) and construct some exact FSSs to the resulting equations.展开更多
Recently, we obtained thirteen families of Jacobian elliptic function solutions of mKdV equation by usingour extended Jacobian elliptic function expansion method. In this note, the mKdV equation is investigated and an...Recently, we obtained thirteen families of Jacobian elliptic function solutions of mKdV equation by usingour extended Jacobian elliptic function expansion method. In this note, the mKdV equation is investigated and anotherthree families of new doubly periodic solutions (Jacobian elliptic function solutions) are fbund again by using a newtransformation, which and our extended Jacobian elliptic function expansion method form a new method still called theextended Jacobian elliptic function expansion method. The new method can be more powertul to be applied to othernonlinear differential equations.展开更多
In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its app...In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.展开更多
Abstract. In this paper, we study the quotient of hypergeometric functions μα (r) in the theory of Ramanujan's generalized modular equation for α ∈(0, 1/2]. Several new inequalities are given for this and rela...Abstract. In this paper, we study the quotient of hypergeometric functions μα (r) in the theory of Ramanujan's generalized modular equation for α ∈(0, 1/2]. Several new inequalities are given for this and related functions. Our main results complement and generalize some known results in the literature.展开更多
A Cauchy problem for the semi-linear elliptic equation is investigated. We use a filtering function method to define a regularization solution for this ill-posed problem. The existence, uniqueness and stability of the...A Cauchy problem for the semi-linear elliptic equation is investigated. We use a filtering function method to define a regularization solution for this ill-posed problem. The existence, uniqueness and stability of the regularization solution are proven;a convergence estimate of H?lder type for the regularization method is obtained under the a-priori bound assumption for the exact solution. An iterative scheme is proposed to calculate the regularization solution;some numerical results show that this method works well.展开更多
By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the...By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the equation are shown, and the numerical simulation with different parameters for the new forms solutions are given.展开更多
The modified mapping method is further improved by the expanded expression of u(ξ) that contains the terms of the first-order derivative of function f(ξ). Some new exact solutions to the mBBM equation are determ...The modified mapping method is further improved by the expanded expression of u(ξ) that contains the terms of the first-order derivative of function f(ξ). Some new exact solutions to the mBBM equation are determined by means of the method. We can obtain many new solutions in terms of the Jacobi elliptic functions of the equation.展开更多
The Sasa-satsuma(SS)dynamical equation interpret propagation of ultra-short and femto-second pulses in optical fibers.This dynamical model has important physical significance.In this article,two mathematical technique...The Sasa-satsuma(SS)dynamical equation interpret propagation of ultra-short and femto-second pulses in optical fibers.This dynamical model has important physical significance.In this article,two mathematical techniques namely,improved F-expansion and improved aux-iliary methods are utilized to construct the several types of solitons such as dark soliton,bright soliton,periodic soliton,Elliptic function and solitary waves solutions of Sasa-satsuma dynamical equation.These results have imperative applications in sciences and other fields,and construc-tive to recognize the physical structure of this complex dynamical model.The computing work and obtained results show the infuence and effectiveness of current methods.展开更多
By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be...We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be used while the remaining two do not represent the solutions of the crucial differential equation. We show that a kinkbtype soliton moves along MTs. Besides this solution, we also discuss a few more solutions that may or may not have physical meanings. Finally, we show what kind of ODE can be solved by using JEFs.展开更多
In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a co...In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a consequence, twelve families of Jacobian elliptic function solutions with different parameters of the Hybrid lattice equation are obtained. When the modulus m → 1 or O, doubly-periodic solutions degenerate to solitonic solutions and trigonometric function solutions, respectively.展开更多
In this article, we study the string equation of type (2,5), which is derived from 2D gravity theory or the string theory. We consider the equation as a 4th order analogue of the first Painlevé equation, take the...In this article, we study the string equation of type (2,5), which is derived from 2D gravity theory or the string theory. We consider the equation as a 4th order analogue of the first Painlevé equation, take the autonomous limit, and solve it concretely by use of the Weierstrass’ elliptic function.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10761005)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010104)
文摘Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.
基金Project supported by the State Key Program for Basic Research of China (Grant No 2004CB418304)the National Natural Science Foundation of China (Grant No 40405010)
文摘By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
文摘An extended Jacobian elliptic function expansion method presented recently by us is applied to the mKdVequation such that thirteen families of Jacobian elliptic function solutions including both new solutions and Fu's allresults are obtained. When the modulus m → 1 or 0, we can find the corresponding six solitary wave solutions and sixtrigonometric function solutions. This shows that our method is more powerful to construct more exact Jacobian ellipticfunction solutions and can be applied to other nonlinear differential equations.
文摘(2 + 1) dimensional Boussinesq and Kadomtsev-Petviashvili equation are investigated by employing Jacobi elliptic function expansion method in this paper. As a result, some new forms traveling wave solutions of the equation are reported. Numerical simulation results are shown. These new solutions may be important for the explanation of some practical physical problems. The results of this paper show that Jacobi elliptic function method can be a useful tool in obtaining evolution solutions of nonlinear system.
基金the State Key Programme of Basic Research of China under,高等学校博士学科点专项科研项目
文摘The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.
基金The project supported by National Natural Science Foundation of China under Grant No. 40305006
文摘In this paper, two transformations are introduced to solve sinh-Gordon equation by using the knowledge of elliptic equation and Jacobian elliptic functions. It is shown that different transformations are required in order to obtain more kinds of solutions to the sinh-Gordon equation.
基金The project supported by National Natural Science Foundation of China under Grant No. 10447007 and the Natural Science Foundation of Shaanxi Province of China under Grant No. 2005A13
文摘This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the generalized conditional symmetry, we obtain complete classification of those equations which admit functional separable solutions (FSSs) and construct some exact FSSs to the resulting equations.
文摘Recently, we obtained thirteen families of Jacobian elliptic function solutions of mKdV equation by usingour extended Jacobian elliptic function expansion method. In this note, the mKdV equation is investigated and anotherthree families of new doubly periodic solutions (Jacobian elliptic function solutions) are fbund again by using a newtransformation, which and our extended Jacobian elliptic function expansion method form a new method still called theextended Jacobian elliptic function expansion method. The new method can be more powertul to be applied to othernonlinear differential equations.
文摘In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.
基金Supported by the Zhejiang Provincial Natural Science Foundation of China(LQ17A010010)the National Natural Science Foundation of China(11171307,11671360)the Natural Science Foundation of the Department of Education of Zhejiang Province(Y201328799)
文摘Abstract. In this paper, we study the quotient of hypergeometric functions μα (r) in the theory of Ramanujan's generalized modular equation for α ∈(0, 1/2]. Several new inequalities are given for this and related functions. Our main results complement and generalize some known results in the literature.
文摘A Cauchy problem for the semi-linear elliptic equation is investigated. We use a filtering function method to define a regularization solution for this ill-posed problem. The existence, uniqueness and stability of the regularization solution are proven;a convergence estimate of H?lder type for the regularization method is obtained under the a-priori bound assumption for the exact solution. An iterative scheme is proposed to calculate the regularization solution;some numerical results show that this method works well.
文摘By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the equation are shown, and the numerical simulation with different parameters for the new forms solutions are given.
基金The project supported by the Science and Technology Foundation of Cuizhou Province of China under Grant No. 20072009
文摘The modified mapping method is further improved by the expanded expression of u(ξ) that contains the terms of the first-order derivative of function f(ξ). Some new exact solutions to the mBBM equation are determined by means of the method. We can obtain many new solutions in terms of the Jacobi elliptic functions of the equation.
文摘The Sasa-satsuma(SS)dynamical equation interpret propagation of ultra-short and femto-second pulses in optical fibers.This dynamical model has important physical significance.In this article,two mathematical techniques namely,improved F-expansion and improved aux-iliary methods are utilized to construct the several types of solitons such as dark soliton,bright soliton,periodic soliton,Elliptic function and solitary waves solutions of Sasa-satsuma dynamical equation.These results have imperative applications in sciences and other fields,and construc-tive to recognize the physical structure of this complex dynamical model.The computing work and obtained results show the infuence and effectiveness of current methods.
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
基金Project supported by Serbian Ministry of Education and Sciences (Grant No.III45010)UGC,NBHM,India (major research projects)+2 种基金BRNS,India (Young Scientist Research Award)ICTP,Italy (Junior Associateship)UGC (Rajiv Gandhi National Fellowship)
文摘We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be used while the remaining two do not represent the solutions of the crucial differential equation. We show that a kinkbtype soliton moves along MTs. Besides this solution, we also discuss a few more solutions that may or may not have physical meanings. Finally, we show what kind of ODE can be solved by using JEFs.
文摘In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a consequence, twelve families of Jacobian elliptic function solutions with different parameters of the Hybrid lattice equation are obtained. When the modulus m → 1 or O, doubly-periodic solutions degenerate to solitonic solutions and trigonometric function solutions, respectively.
文摘In this article, we study the string equation of type (2,5), which is derived from 2D gravity theory or the string theory. We consider the equation as a 4th order analogue of the first Painlevé equation, take the autonomous limit, and solve it concretely by use of the Weierstrass’ elliptic function.