Based on the 2D horizontal plane numerical model, a quasi-3D numerical model is established for coastal regions of shallow water. The characteristics of this model are that the velocity profiles;can be obtained at the...Based on the 2D horizontal plane numerical model, a quasi-3D numerical model is established for coastal regions of shallow water. The characteristics of this model are that the velocity profiles;can be obtained at the same time when the equations of the value of difference between the horizontal current velocity and its depth-averaged velocity in the vertical direction are solved and the results obtained are consistent with the results of the 2D, model. The circulating flow in the rectangular area induced by wind is simulated and applied to the tidal flow field of the radial sandbanks in the South Yellow Sea. The computational results from this quasi-3D model are in good agreement with analytical results and observed data. The solution of the finite difference equations has been found to be stable, and the model is simple, effective and practical.展开更多
Nonlinear stability criteria for quasi-geostrophic zonally symmetric flow are improved by establishing an optimal Poincard inequality. The inequality is derived by a variational calculation considering the additional ...Nonlinear stability criteria for quasi-geostrophic zonally symmetric flow are improved by establishing an optimal Poincard inequality. The inequality is derived by a variational calculation considering the additional invariant of zonal momentum. When applied to the Eady model in a periodic channel with finite zonal length, the improved nonlinear stability criterion is identical to the linear normal-mode stability criterion provided the channel meridional width is no greater than 0.8605... times its channel length (which is the geophysically relevant case).展开更多
Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured...Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.展开更多
In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D e...In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D electromagnetic field model of PMLSM is established. Special attention is paid to its structure and the influence of longitudinal and transverse end effect. The distribution of electromagnetic field of PMLSM can be obtained directly and promptly by using FFT algorithm. It can also be used for the analysis of other LSM.展开更多
Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae bet...Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.展开更多
Recent advances in heterojunction and interfacial engineering of perovskite solar cells(PSCs)have enabled great progress in developing highly efficient and stable devices.Nevertheless,the effect of halide choice on th...Recent advances in heterojunction and interfacial engineering of perovskite solar cells(PSCs)have enabled great progress in developing highly efficient and stable devices.Nevertheless,the effect of halide choice on the formation mechanism,crystallography,and photoelectric properties of the lowdimensional phase still requires further detailed study.In this work,we present key insights into the significance of halide choice when designing passivation strategies comprising large organic spacer salts,clarifying the effect of anions on the formation of quasi-2D/3D heterojunctions.To demonstrate the importance of halide influences,we employ novel neo-pentylammonium halide salts with different halide anions(neoPAX,X=I,Br,or Cl).We find that regardless of halide selection,iodide-based(neoPA)_(2)(FA)_((n-1))PbnI_((3n+1))phases are formed above the perovskite substrate,while the added halide anions diffuse and passivate the perovskite bulk.In addition,we also find the halide choice has an influence on the degree of dimensionality(n).Comparing the three halides,we find that chloride-based salts exhibit superior crystallographic,enhanced carrier transport,and extraction compared to the iodide and bromide analogs.As a result,we report high power conversion efficiency in quasi-2D/3D PSCs,which are optimal when using chloride salts,reaching up to 23.35%,and improving long-term stability.展开更多
Swept blades are widely utilized in transonic compressors/fans and provide high load,high through-flow,high efficiency,and adequate stall margin.However,there is limited quantitative research on the mechanism of the e...Swept blades are widely utilized in transonic compressors/fans and provide high load,high through-flow,high efficiency,and adequate stall margin.However,there is limited quantitative research on the mechanism of the effect of swept blades on the flow field,resulting in a lack of direct quantitative guidance for the design and analysis of swept blades in fans/compressors.To better understand this mechanism,this study employs a reduced-dimensional force equilibrium method to analyze more than 1500 swept cascades data.Results verify that circumferential fluctuation terms are responsible for inducing radial migration in the inlet airflow field of the swept blade,resulting in variations in the incidence angle and consequently leading to changes in the characteristics of the swept blade.Thus,a combination of simple functions and machine learning is utilized to model the circumferential fluctuation terms and quantify the sweep mechanism.The prediction accuracy of the model is high,with coefficient of determination greater than 0.95 on the test set.When the model is applied in a meridional flow analysis program,the calculation accuracy of the program for the incidence angle is improved by 0.4°and 0.6°at the design and off-design conditions respectively,compensating for the program’s original deficiencies.Meanwhile,the model can also provide quantitative guidance for the design of swept blades,thereby reducing the number of design iterations and improving design efficiency.展开更多
A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device struc...A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.展开更多
基金National Natural Science Foundation of China(Grant No.49236120)
文摘Based on the 2D horizontal plane numerical model, a quasi-3D numerical model is established for coastal regions of shallow water. The characteristics of this model are that the velocity profiles;can be obtained at the same time when the equations of the value of difference between the horizontal current velocity and its depth-averaged velocity in the vertical direction are solved and the results obtained are consistent with the results of the 2D, model. The circulating flow in the rectangular area induced by wind is simulated and applied to the tidal flow field of the radial sandbanks in the South Yellow Sea. The computational results from this quasi-3D model are in good agreement with analytical results and observed data. The solution of the finite difference equations has been found to be stable, and the model is simple, effective and practical.
文摘Nonlinear stability criteria for quasi-geostrophic zonally symmetric flow are improved by establishing an optimal Poincard inequality. The inequality is derived by a variational calculation considering the additional invariant of zonal momentum. When applied to the Eady model in a periodic channel with finite zonal length, the improved nonlinear stability criterion is identical to the linear normal-mode stability criterion provided the channel meridional width is no greater than 0.8605... times its channel length (which is the geophysically relevant case).
基金financially supported by the National Natural Science Foundation of China(No.41774125)Key Program of National Natural Science Foundation of China(No.41530320)+1 种基金the Key National Research Project of China(Nos.2016YFC0303100 and 2017YFC0601900)the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Special(No.XDA 14020102)
文摘Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.
文摘In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D electromagnetic field model of PMLSM is established. Special attention is paid to its structure and the influence of longitudinal and transverse end effect. The distribution of electromagnetic field of PMLSM can be obtained directly and promptly by using FFT algorithm. It can also be used for the analysis of other LSM.
基金financially supported by the National Basic Research Program of China (No. 2013CBA01803)the National Natural Science Foundation of China (No. 41101065)and the CAS "Equipment Development Project for Scientific Research" (No. YZ201523)
文摘Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.
基金X.L.and T.W.are contributed equally to this work.W.Z.acknowledges the Engineering and Physical Sciences Research Council(EPSRC)New Investigator Award(2018EP/R043272/1)+8 种基金Marie Skłodowska-Curie Actions Individual Fellowships(839136)H.L.acknowledges the Newton Advanced Fellowship(192097)X.L.acknowledges the financial support from Zhengzhou University ScholarshipT.W thanks the University of Surrey Doctoral College for financial supportS.J.S.gratefully acknowledges the support of EPSRC(UK)under grant number EP/N021037/1L.D.thanks the China Scholarship Council and the Cambridge Trusts for fundingR.C.K.and J.A.S.thank the company Xenocs for their ongoing support through the X-ray scattering user program at the University of Sheffield and the EPSRC for funding the purchase of this instrumentZ.W.,Y.S.,and G.S.thank the financial support from Zhengzhou Materials Genome InstituteS.D.S.and K.J.acknowledge the Royal Society for funding。
文摘Recent advances in heterojunction and interfacial engineering of perovskite solar cells(PSCs)have enabled great progress in developing highly efficient and stable devices.Nevertheless,the effect of halide choice on the formation mechanism,crystallography,and photoelectric properties of the lowdimensional phase still requires further detailed study.In this work,we present key insights into the significance of halide choice when designing passivation strategies comprising large organic spacer salts,clarifying the effect of anions on the formation of quasi-2D/3D heterojunctions.To demonstrate the importance of halide influences,we employ novel neo-pentylammonium halide salts with different halide anions(neoPAX,X=I,Br,or Cl).We find that regardless of halide selection,iodide-based(neoPA)_(2)(FA)_((n-1))PbnI_((3n+1))phases are formed above the perovskite substrate,while the added halide anions diffuse and passivate the perovskite bulk.In addition,we also find the halide choice has an influence on the degree of dimensionality(n).Comparing the three halides,we find that chloride-based salts exhibit superior crystallographic,enhanced carrier transport,and extraction compared to the iodide and bromide analogs.As a result,we report high power conversion efficiency in quasi-2D/3D PSCs,which are optimal when using chloride salts,reaching up to 23.35%,and improving long-term stability.
基金supported by the National Natural Science Foundation of China(No.52376021)。
文摘Swept blades are widely utilized in transonic compressors/fans and provide high load,high through-flow,high efficiency,and adequate stall margin.However,there is limited quantitative research on the mechanism of the effect of swept blades on the flow field,resulting in a lack of direct quantitative guidance for the design and analysis of swept blades in fans/compressors.To better understand this mechanism,this study employs a reduced-dimensional force equilibrium method to analyze more than 1500 swept cascades data.Results verify that circumferential fluctuation terms are responsible for inducing radial migration in the inlet airflow field of the swept blade,resulting in variations in the incidence angle and consequently leading to changes in the characteristics of the swept blade.Thus,a combination of simple functions and machine learning is utilized to model the circumferential fluctuation terms and quantify the sweep mechanism.The prediction accuracy of the model is high,with coefficient of determination greater than 0.95 on the test set.When the model is applied in a meridional flow analysis program,the calculation accuracy of the program for the incidence angle is improved by 0.4°and 0.6°at the design and off-design conditions respectively,compensating for the program’s original deficiencies.Meanwhile,the model can also provide quantitative guidance for the design of swept blades,thereby reducing the number of design iterations and improving design efficiency.
基金supported by the National Natural Science Foundation of China(No.50777005)the Young Foundation of University of Electronic Science and Technology of China(No.JX0832)
文摘A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.