For a right R-module N, we introduce the quasi-Armendariz modules which are a common generalization of the Armendariz modules and the quasi-Armendariz rings, and investigate their properties. Moreover, we prove that N...For a right R-module N, we introduce the quasi-Armendariz modules which are a common generalization of the Armendariz modules and the quasi-Armendariz rings, and investigate their properties. Moreover, we prove that NR is quasi-Armendariz if and only if Mm(N)Mm(R) is quasi-Armendariz if and only if Tm(N)Tm(R) is quasi-Armendariz, where Mm(N) and Tm(N) denote the m×m full matrix and the m×m upper triangular matrix over N, respectively. NR is quasi-Armendariz if and only if N[x]R[x] is quasi-Armendariz. It is shown that every quasi-Baer module is quasi-Armendariz module.展开更多
引入拟正则Armendariz环并研究其性质。证明弱Armendariz环是拟正则Armendariz环,直积∏i∈I R i是拟正则Armendariz环当且仅当每个环R i(i∈I)是拟正则Armendariz环,同时证明R是拟正则Armendariz环当且仅当上三角矩阵环T n(R)(n≥2)是...引入拟正则Armendariz环并研究其性质。证明弱Armendariz环是拟正则Armendariz环,直积∏i∈I R i是拟正则Armendariz环当且仅当每个环R i(i∈I)是拟正则Armendariz环,同时证明R是拟正则Armendariz环当且仅当上三角矩阵环T n(R)(n≥2)是拟正则Armendariz环,并通过例子说明任意环R上的全矩阵环M n(R)(n≥2)不是拟正则Armendariz环。展开更多
Let R be a ring and (S,≤) a strictly ordered monoid. In this paper, we deal with a new approach to reflexive property for rings by using nilpotent elements, in this direction we introduce the notions of generalized p...Let R be a ring and (S,≤) a strictly ordered monoid. In this paper, we deal with a new approach to reflexive property for rings by using nilpotent elements, in this direction we introduce the notions of generalized power series reflexive and nil generalized power series reflexive, respectively. We obtain various necessary or sufficient conditions for a ring to be generalized power series reflexive and nil generalized power series reflexive. Examples are given to show that, nil generalized power series reflexive need not be generalized power series reflexive and vice versa, and nil generalized power series reflexive but not semicommutative are presented. We proved that, if R is a left APP-ring, then R is generalized power series reflexive, and R is nil generalized power series reflexive if and only if R/I is nil generalized power series reflexive. Moreover, we investigate ring extensions which have roles in ring theory.展开更多
This paper mainly studies some properties of skew polynomial ring related to Morita invariance, Armendariz and (quasi)-Baer. First, we show that skew polynomial ring has no Morita invariance by the counterexample. The...This paper mainly studies some properties of skew polynomial ring related to Morita invariance, Armendariz and (quasi)-Baer. First, we show that skew polynomial ring has no Morita invariance by the counterexample. Then we prove a necessary condition that skew polynomial ring constitutes Armendariz ring. We lastly investigate that condition of skew polynomial ring is a (quasi)-Baer ring, and verify that the conditions is necessary, but not sufficient by example and counterexample.展开更多
Let R be a ring with an endomorphism a. We show that the clean property and various Armendariz-type properties of R are inherited by the skew matrix rings S(R, n, σ) and T(R, n,σ). They allow the construction of...Let R be a ring with an endomorphism a. We show that the clean property and various Armendariz-type properties of R are inherited by the skew matrix rings S(R, n, σ) and T(R, n,σ). They allow the construction of rings with a non-zero nilpotent ideal of arbitrary index of nilpotency which inherit various interesting properties of rings.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.10571026)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20060286006) Science Foundation for Youth Scholars of Northwest Normal University (Grant No.NWNU-LKQN-08-1)
文摘For a right R-module N, we introduce the quasi-Armendariz modules which are a common generalization of the Armendariz modules and the quasi-Armendariz rings, and investigate their properties. Moreover, we prove that NR is quasi-Armendariz if and only if Mm(N)Mm(R) is quasi-Armendariz if and only if Tm(N)Tm(R) is quasi-Armendariz, where Mm(N) and Tm(N) denote the m×m full matrix and the m×m upper triangular matrix over N, respectively. NR is quasi-Armendariz if and only if N[x]R[x] is quasi-Armendariz. It is shown that every quasi-Baer module is quasi-Armendariz module.
文摘Let R be a ring and (S,≤) a strictly ordered monoid. In this paper, we deal with a new approach to reflexive property for rings by using nilpotent elements, in this direction we introduce the notions of generalized power series reflexive and nil generalized power series reflexive, respectively. We obtain various necessary or sufficient conditions for a ring to be generalized power series reflexive and nil generalized power series reflexive. Examples are given to show that, nil generalized power series reflexive need not be generalized power series reflexive and vice versa, and nil generalized power series reflexive but not semicommutative are presented. We proved that, if R is a left APP-ring, then R is generalized power series reflexive, and R is nil generalized power series reflexive if and only if R/I is nil generalized power series reflexive. Moreover, we investigate ring extensions which have roles in ring theory.
文摘This paper mainly studies some properties of skew polynomial ring related to Morita invariance, Armendariz and (quasi)-Baer. First, we show that skew polynomial ring has no Morita invariance by the counterexample. Then we prove a necessary condition that skew polynomial ring constitutes Armendariz ring. We lastly investigate that condition of skew polynomial ring is a (quasi)-Baer ring, and verify that the conditions is necessary, but not sufficient by example and counterexample.
文摘Let R be a ring with an endomorphism a. We show that the clean property and various Armendariz-type properties of R are inherited by the skew matrix rings S(R, n, σ) and T(R, n,σ). They allow the construction of rings with a non-zero nilpotent ideal of arbitrary index of nilpotency which inherit various interesting properties of rings.