期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Factorisable Quasi-adequate Semigroups
1
作者 PENG Ting-ting GUO Xiao-jiang 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第1期93-99,共7页
In this paper,we investigate a class of factorisable IC quasi-adequate semigroups,so-called,factorisable IC quasi-adequate semigroups of type-(H,I).Some characterizations of factorisable IC quasi-adequate semigroups... In this paper,we investigate a class of factorisable IC quasi-adequate semigroups,so-called,factorisable IC quasi-adequate semigroups of type-(H,I).Some characterizations of factorisable IC quasi-adequate semigroups of type-(H,I) are obtained.In particular,we prove that any IC quasi-adequate semigroup has a factorisable IC quasi-adequate subsemigroups of type-(H,I) and a band of cancellative monoids. 展开更多
关键词 factorisable semigroup IC quasi-adequate semigroup factorisable abundant semigroups of type-(H I)
下载PDF
Split Quasi-adequate Semigroups 被引量:1
2
作者 Xiao Jiang GUO Ting Ting PENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第2期425-438,共14页
The so-called split IC quasi-adequate semigroups are in the class of idempotent-connected quasi-adequate semigroups. It is proved that an IC quasi-adequate semigroup is split if and only if it has an adequate transver... The so-called split IC quasi-adequate semigroups are in the class of idempotent-connected quasi-adequate semigroups. It is proved that an IC quasi-adequate semigroup is split if and only if it has an adequate transversal. The structure of such semigroup whose band of idempotents is regular will be particularly investigated. Our obtained results enrich those results given by McAlister and Blyth on split orthodox semigroups. 展开更多
关键词 quasi-adequate semigroup adequate semigroup adequate transversal regular band type-A semigroup
原文传递
一类偏序富足半群的结构
3
作者 陈辉 《南京大学学报(数学半年刊)》 CAS 2001年第1期11-16,共6页
Blyth和McFadden讨论了具有最大幂等元的自然序富足半群的结构,得到一种分解方法:El-Qallali把此方法推广到一类quasi-adequate半群上.我们推广此方法,把它应用到满足正则性条件且含最大幂等元的自然序富足半群上,讨论了这类半群的结构.
关键词 偏序半群 最大幂等元 交叠积 自然序富足半群 偏序富足半群 quasi-adequate半群 正则半群
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部