期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
COMPLETE KAHLER METRICS WITH POSITIVE HOLOMORPHIC SECTIONAL CURVATURES ON CERTAIN LINE BUNDLES(RELATED TO A COHOMOGENEITY ONE POINT OF VIEW ON A YAU CONJECTURE) 被引量:1
1
作者 段晓曼 关庄丹 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期78-102,共25页
In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strateg... In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry. 展开更多
关键词 Kahler Metrics complete riemannian metrics open complex manifolds holomorphic bisectional curvature C*bundle almost homogeneous manifolds
下载PDF
The Manifolds with Ricci Curvature Decay to Zero
2
作者 Huashui Zhan 《Advances in Pure Mathematics》 2012年第1期36-38,共3页
The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riem... The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riemannian manifold M with Ricci curvature decay to zero, if there is a line in M, then the isometrically splitting M = R × N is true. 展开更多
关键词 Cheeger-Gromoll Theorem Busemann Function Complete riemannian manifold RICCI curvature DECAY to ZERO
下载PDF
Lower Bound of the First Eigenvalue for the Laplace Operator on Compact Riemannian Manifold
3
作者 祁锋 郭白妮 《Chinese Quarterly Journal of Mathematics》 CSCD 1993年第2期40-49,共10页
Let M be a compact m-dimensional Riemannian manifold, let d denote, its diameter, -R(R>O) the lower bound of the Ricci curvature, and λ_1 the first eigerivalue for the Laplacian on M. Then there exists a constant ... Let M be a compact m-dimensional Riemannian manifold, let d denote, its diameter, -R(R>O) the lower bound of the Ricci curvature, and λ_1 the first eigerivalue for the Laplacian on M. Then there exists a constant C_m=max{2^(1/m-1),2^(1/2)}, Such that λ_1≥π~2/d^2·1/(2-(11)/(2π~2))+11/2π~2e^cm、 展开更多
关键词 Laplace Opeator riemannian manifold Ricoi curvature Lower.Bound Diameter EIGENVALUE
下载PDF
The Harmonic Functions on a Complete Asymptotic Flat Riemannian Manifold
4
作者 Huashui Zhan 《Advances in Pure Mathematics》 2011年第2期5-8,共4页
Let be a simply connected complete Riemannian manifold with dimension n≥3 . Suppose that the sectional curvature satisfies , where p is distance function from a base point of M, a, b are constants and . Then there ex... Let be a simply connected complete Riemannian manifold with dimension n≥3 . Suppose that the sectional curvature satisfies , where p is distance function from a base point of M, a, b are constants and . Then there exist harmonic functions on M . 展开更多
关键词 HARMONIC Function riemannian manifold Negative Sectional curvature
下载PDF
拟常曲率Riemannian流行的一个Pinching定理
5
作者 汪富泉 吴金文 《吉首大学学报》 1992年第6期1-6,共6页
本文证明了积分不等式∫M∑i=1β≠n+1hi^2βj[3-1/p-1+n^1/2)S-na-1/2(n+1)(b-│b│)]*1≥0从而得到如下Pinching定理:若S≤[na+1/2(n+1)(b-│b│)]/(3-1/p-1+n^1/2)则M落在N的一个全测地子流行S^n+1中或S=[na+1/2(n+1)(b-│b│)]/... 本文证明了积分不等式∫M∑i=1β≠n+1hi^2βj[3-1/p-1+n^1/2)S-na-1/2(n+1)(b-│b│)]*1≥0从而得到如下Pinching定理:若S≤[na+1/2(n+1)(b-│b│)]/(3-1/p-1+n^1/2)则M落在N的一个全测地子流行S^n+1中或S=[na+1/2(n+1)(b-│b│)]/(3-1/p-1+n^1/2)所得积分不等式优于白正国教授的结果而Pinching定理是丘成桐教授相应定理的推广。 展开更多
关键词 黎曼流形 子流形 中曲率 PINCHING定理 riemannian流形 常曲率
下载PDF
An Interpolation of Hardy Inequality and Moser–Trudinger Inequality on Riemannian Manifolds with Negative Curvature 被引量:2
6
作者 Yan Qing DONG Qiao Hua YANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第7期856-866,共11页
Let M be a complete, simply connected Riemannian manifold with negative curvature. We obtain an interpolation of Hardy inequality and Moser-Trudinger inequality on M. Furthermore, the constant we obtain is sharp.
关键词 Moser-Trudinger inequality Hardy inequality riemannian manifold negative curvature
原文传递
The extension for mean curvature flow with finite integral curvature in Riemannian manifolds 被引量:3
7
作者 XU HongWei YE Fei ZHAO EnTao 《Science China Mathematics》 SCIE 2011年第10期2195-2204,共10页
We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be... We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be extended over time T. Moreover,we show that the condition is optimal in some sense. 展开更多
关键词 mean curvature flow riemannian manifold maximal existence integral curvature
原文传递
DARBOUX EQUATIONS AND ISOMETRIC EMBEDDING OF RIEMANNIAN MANIFOLDS WITH NONNEGATIVE CURVATURE IN R 被引量:3
8
作者 HONG JIAXING 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1999年第2期123-136,共14页
The present paper is concerned with the existence of golbal smooth solutions for the homogeneous Dirichlet boundary value problem of the Darboux equation and the case degenerate onthe boundary is contained As some app... The present paper is concerned with the existence of golbal smooth solutions for the homogeneous Dirichlet boundary value problem of the Darboux equation and the case degenerate onthe boundary is contained As some applications the smooth isometric embeddings of positivelyand nonnegatively curved disks into R^3 are constructed. 展开更多
关键词 Darboux equation Isometric embedding riemannian manifold Nonnegative curvature
原文传递
A Quantum Representation of the Homogeneous 5D Manifold and the Perelman Mappings of 5D onto Non-Homogeneous Lorentz 4D Manifolds 被引量:2
9
作者 Kai Wai Wong Peter Chin Wan Fung Wan Ki Chow 《Journal of Modern Physics》 2019年第5期557-575,共19页
The expression of the Maxwell magnetic monopole was employed to correlate the space to space projection that gives rise to the Gell-Mann standard model, and space to time projection which gives the leptons;and how doe... The expression of the Maxwell magnetic monopole was employed to correlate the space to space projection that gives rise to the Gell-Mann standard model, and space to time projection which gives the leptons;and how does it correlate to the Perelman mappings from the homogeneous 5D manifold to the Lorentz 4D manifold, together with correlating the physical consequences caused by the breaking of the Diagonal Long Range Order [DLRO] of the monopoles quantum states affected by the motion of massive particles in the Lorentz 4D boundary of the 5D manifold, which leads to gravitons and the gravity field via the General Relativity covariant Riemannian 4D curvatures metric equation. 展开更多
关键词 5D HOMOGENEOUS manifold Perelman MAPPINGS Magnetic MONOPOLES Space Projections and Topological Symmetries COVARIANT riemannian curvature and Gravity
下载PDF
ON THE SECTIONAL CURVATURE OF A RIEMANNIAN MANIFOLD
10
作者 白正国 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1990年第1期70-73,共4页
In this paper the author establishes the following1.If M^n(n≥3)is a connected Riemannian manifold,then the sectional curvatureK(p),where p is any plane in T^x(M),is a function of at most n(n-1)/2 variables.Moreprecis... In this paper the author establishes the following1.If M^n(n≥3)is a connected Riemannian manifold,then the sectional curvatureK(p),where p is any plane in T^x(M),is a function of at most n(n-1)/2 variables.Moreprecisely,K(p)depends on at most n(n-1)/2 parameters of group SO(n).2.Lot M^n(n≥3)be a connected Riemannian manifold.If there exists a point x ∈ Msuch that the sectional curvature K(p)is independent of the plane p∈T_x(M),then M is aspace of constant curvature.This latter improves a well-known theorem of F.Schur. 展开更多
关键词 riemannian curvature manifold connected latter sectional depen BUNDLE proof ALGEBRA
原文传递
ON THE NON-EXISTENCE OF L^2-EIGENVALUES OF MANIFOLDS OF COLUM TYPE
11
作者 陈杰诚 《Analysis in Theory and Applications》 1992年第4期58-60,共3页
In[4],Li proved that Yau’s conjecture“For non-compact connected completeRiemannian manifold M.M has no L;-eigenvalues if its sectional curvature K;≥0”holds if M can be represented as a Riemannian product M=R;×... In[4],Li proved that Yau’s conjecture“For non-compact connected completeRiemannian manifold M.M has no L;-eigenvalues if its sectional curvature K;≥0”holds if M can be represented as a Riemannian product M=R;×N.Acturally,heproved(without the restriction K;≥0) 展开更多
关键词 riemannian curvature manifold CONJECTURE connected holds sectional LAPLACE dense shorter
下载PDF
A Pinching Theorem for Riemannian Foliations with Parallel Mean Curvature in a Local-Symmetric Riemannian Manifold
12
作者 PENG Hui Chun LI Zhi Bo 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第2期383-388,共6页
We discuss the Riemannian foliations with parallel mean curvature in a local- symmetric Riemannian manifold,and obtain a pinching theorem about it.
关键词 riemannian foliations local-symmetric riemannian manifold mean curvature DIVERGENCE
下载PDF
The Extension of the H^k Mean Curvature Flow in Riemannian Manifolds
13
作者 Hongbing QIU Yunhua YE Anqiang ZHU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第2期191-208,共18页
In this paper,the authors consider a family of smooth immersions Ft : Mn→Nn+1of closed hypersurfaces in Riemannian manifold Nn+1with bounded geometry,moving by the Hkmean curvature flow.The authors show that if the s... In this paper,the authors consider a family of smooth immersions Ft : Mn→Nn+1of closed hypersurfaces in Riemannian manifold Nn+1with bounded geometry,moving by the Hkmean curvature flow.The authors show that if the second fundamental form stays bounded from below,then the Hkmean curvature flow solution with finite total mean curvature on a finite time interval [0,Tmax)can be extended over Tmax.This result generalizes the extension theorems in the paper of Li(see "On an extension of the Hkmean curvature flow,Sci.China Math.,55,2012,99–118"). 展开更多
关键词 Hk mean curvature flow riemannian manifold Sobolev type inequality Moser iteration
原文传递
混合曲率空间中的几何自适应元学习方法
14
作者 高志 武玉伟 贾云得 《计算机学报》 EI CAS CSCD 北大核心 2024年第10期2289-2306,共18页
元学习通过学习先验知识,能帮助模型快速适应新任务.在适应新任务的过程中,空间几何结构与数据几何结构的匹配程度对模型泛化起着重要作用.现实世界数据具有多样的非欧几何结构,例如自然语言具有非欧层级结构,人脸图像具有非欧环状结构... 元学习通过学习先验知识,能帮助模型快速适应新任务.在适应新任务的过程中,空间几何结构与数据几何结构的匹配程度对模型泛化起着重要作用.现实世界数据具有多样的非欧几何结构,例如自然语言具有非欧层级结构,人脸图像具有非欧环状结构等.已有研究表明,真实数据的非欧结构同黎曼流形的几何结构相匹配,从理论上提供了利用黎曼流形来建模数据的可行性.本文提出了混合曲率空间(mixed-curvature space)中的几何自适应元学习方法,利用多个混合曲率空间来表示数据,并生成与数据非欧结构相匹配的黎曼几何.本文构建了多混合曲率神经网络,将混合曲率空间的几何结构表示为曲率空间的曲率、数量和维度,由此通过梯度下降过程实现对数据非欧结构的几何自适应.本文进一步引入几何初始化生成策略和几何更新策略,通过少数几步迭代,空间几何结构即可快速匹配数据非欧结构,加速了梯度下降过程.本文在小样本分类和小样本回归等任务上进行了实验验证.与欧氏空间的元学习方法相比,本文方法在小样本分类任务上取得了约3%的准确率提升,在小样本回归任务上将均方误差减少了一半,验证了本文方法的有效性. 展开更多
关键词 元学习 几何自适应 混合曲率空间 黎曼流形
下载PDF
Eigenvalues for the Clamped Plate Problem of L_(ν)^(2) Operator on Complete Riemannian Manifolds
15
作者 Ling Zhong ZENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第9期2223-2243,共21页
L_(ν) operator is an important extrinsic differential operator of divergence type and has profound geometric settings.In this paper,we consider the clamped plate problem of L_(ν)^(2)operator on a bounded domain of t... L_(ν) operator is an important extrinsic differential operator of divergence type and has profound geometric settings.In this paper,we consider the clamped plate problem of L_(ν)^(2)operator on a bounded domain of the complete Riemannian manifolds.A general formula of eigenvalues of L_(ν)^(2) operator is established.Applying this general formula,we obtain some estimates for the eigenvalues with higher order on the complete Riemannian manifolds.As several fascinating applications,we discuss this eigenvalue problem on the complete translating solitons,minimal submanifolds on the Euclidean space,submanifolds on the unit sphere and projective spaces.In particular,we get a universal inequality with respect to the L_(II) operator on the translating solitons.Usually,it is very difficult to get universal inequalities for weighted Laplacian and even Laplacian on the complete Riemannian manifolds.Therefore,this work can be viewed as a new contribution to universal estimate. 展开更多
关键词 Mean curvature flows L_(ν)^(2)operator clamped plate problem EIGENVALUES riemannian manifolds translating solitons
原文传递
Cartan-Hadamard流形上关于Lorentz范数的Trudinger-Moser不等式
16
作者 张佳杰 《数学杂志》 2024年第4期283-292,共10页
本文研究了Cartan-Hadamard流形上带Lorentz范数的Trudinger-Moser不等式.利用了相关格林函数的逐点估计以及O’Neil不等式,我们得到了该不等式的最佳常数,推广了相应欧氏空间上的结果.
关键词 Trudinger-Moser不等式 LORENTZ空间 riemannian流形 负曲率 最佳常数
下载PDF
RIGIDITY THEOREMS FOR HYPERSURFACES IN RIEMAN-NIAN MANIFOLD OF CONSTANT CURVATURE
17
作者 李安民 《Chinese Science Bulletin》 SCIE EI CAS 1986年第8期569-570,共2页
In this letter we prove several global rigidity theorems for hypersurfaces in Riemannian manifold of constant curvature, which are generalizations of some wellknown theorems for convex hypersurfaces in En+1, Sn+1 and ... In this letter we prove several global rigidity theorems for hypersurfaces in Riemannian manifold of constant curvature, which are generalizations of some wellknown theorems for convex hypersurfaces in En+1, Sn+1 and Hn+1. Our main results are as follows: 展开更多
关键词 riemannian curvature manifold LETTER RIGIDITY CONVEX instead 订口 无无
原文传递
SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR
18
作者 沈一兵 《Chinese Science Bulletin》 SCIE EI CAS 1983年第5期716-,共1页
Let Sn+p be a unit (n+p) sphere and f: M→Sn+p an isometric immersion of an n-ditmensional Riemannian manifold M into Sn+p, If the length of the mean curvature vector ξ of f(M) is constant and the vector ξ/|ξ| ... Let Sn+p be a unit (n+p) sphere and f: M→Sn+p an isometric immersion of an n-ditmensional Riemannian manifold M into Sn+p, If the length of the mean curvature vector ξ of f(M) is constant and the vector ξ/|ξ| is parallel im the normal bundle, then f(M) is called the submanifold 展开更多
关键词 riemannian curvature manifold BUNDLE IMMERSION length allel totally SIMON 毛口
原文传递
Manifolds of positive Ricci curvature,quadratically asymptotically nonnegative curvature,and infinite Betti numbers
19
作者 Huihong Jiang Yihu Yang 《Science China Mathematics》 SCIE CSCD 2022年第10期2183-2200,共18页
In a previous paper(Jiang and Yang(2021)),we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimensions greater than... In a previous paper(Jiang and Yang(2021)),we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimensions greater than or equal to 6.The purpose of the present paper is to use a different technique to exhibit a family of complete I-dimensional(I≥5)Riemannian manifolds of positive Ricci curvature,quadratically asymptotically nonnegative sectional curvature,and certain infinite Betti numbers bj(2≤j≤I-2). 展开更多
关键词 riemannian manifold positive Ricci curvature quadratically asymptotically nonnegative curvature
原文传递
ON COMPLETE SPACE-LIKE SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR 被引量:10
20
作者 SHEN YIBIING DONG YUXING 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1998年第3期369-380,共12页
Let M n be a complete space-like submanifold with parallel mean curvature vector in an indefinite space form N n+p p (c).A sharp estimate for the upper bound of the norm of the second fundamental form ... Let M n be a complete space-like submanifold with parallel mean curvature vector in an indefinite space form N n+p p (c).A sharp estimate for the upper bound of the norm of the second fundamental form of M n is obtained. A generalization of this result to complete space-like hypersurfaces with constant mean curvature in a Lorentz manifold is given. Moreover, harmonic Gauss maps of M n in N n+p p(c) in a generalized sense are considered. 展开更多
关键词 Pseudo-riemannian manifold Space-like submanifolds Parallel mean curvature vector Second fundamental form
全文增补中
上一页 1 2 7 下一页 到第
使用帮助 返回顶部