As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stor...As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stored energy on localized corrosion evolution in 2A97 Al-Cu-Li alloy,cold working and artificial aging were carried out to produce 2A97 Al-Cu-Li alloys under different thermomechanical conditions.Quasi-in-situ analysis,traditional immersion test and electrochemical measurement were then conducted to examine the corrosion behavior of 2A97 alloys.It is revealed that precipitate significantly affects Cu enrichment at corrosion fronts,which determines corrosion susceptibility of alloys,whereas grain-stored energy distribution is closely associated with localized corrosion propagation.It is also indicated that quasi-in-situ analysis exhibits a consistent corrosion evolution with traditional immersion tests,which is regarded as a proper method to explore localized corrosion mechanisms by providing local microstructural information with enhanced time and spatial resolutions.展开更多
This study investigated the effects of multi-walled carbon nanotubes(MWCNTs) and polycaprolactone(PCL) on the quasi-in vivo corrosion behavior of AZ31B Mg alloy treated by plasma electrolytic oxidation(PEO). Thin(~2 ...This study investigated the effects of multi-walled carbon nanotubes(MWCNTs) and polycaprolactone(PCL) on the quasi-in vivo corrosion behavior of AZ31B Mg alloy treated by plasma electrolytic oxidation(PEO). Thin(~2 μm, PCTPCL4) and thick(~60 μm, PCTPCL6) PCL layers were applied only onto the MWCNTs-PEO coating(PCT) as it showed better corrosion performance. Findings reveal that incorporation of MWCNTs induced several structural and functional modifications in the PEO coating, such as increased roughness, a thicker inner barrier layer, and reduced hydrophilicity.Quasi-in vivo corrosion testing was carried out under controlled temperature, p H, and fluid flow in simulated body fluid(SBF) by electrochemical impedance spectroscopy(EIS) and hydrogen evolution experiments. EIS results revealed that, after 48 h immersion, a diffusion process controlled hydration of the ceramic coatings. Comparison of the collected hydrogen after 15 days of immersion in the quasi-in vivo environment revealed that the PEO and PCT ceramic coatings decreased hydrogen generation by up to 74% and 91%, respectively, compared to non-coated alloy.PCTPCL6 coating exhibited the lowest amount of collected hydrogen(0.2 m L/cm^(2)). The thick PCL layer delayed the onset of substrate corrosion for at least 120 h, reducing the corrosion rate by 85% compared with the PCT.展开更多
The initial micro-galvanic corrosion behavior of Mg-30wt%Ca alloy only containing Mg_(2)Ca andα-Mg was studied by immersion testing in a 0.9%Na Cl solution at 37°C.The quasi-in situ SEM and TEM results show that...The initial micro-galvanic corrosion behavior of Mg-30wt%Ca alloy only containing Mg_(2)Ca andα-Mg was studied by immersion testing in a 0.9%Na Cl solution at 37°C.The quasi-in situ SEM and TEM results show that Mg_(2)Ca corroded easier thanα-Mg,indicating that Mg_(2)Ca acted as an anode.The work function(Φ)for Mg_(2)Ca calculated by first-principles is significantly lower compared to that forα-Mg.The Volta potential measured by a scanning Kelvin probe force microscope reveals that the Mg_(2)Ca had a relatively low Volta potential(ψ)value.The lowerΦandψvalues for Mg_(2)Ca indicate a lower electrochemical nobility,which is consistent with the experimental phenomenon.展开更多
To examine the influence of grain boundary engineering(GBE)on the work hardening behavior,the tensile tests were carried out on the non-GBE and GBE AL6XN super-austenitic stainless steel(ASS)samples with a comparable ...To examine the influence of grain boundary engineering(GBE)on the work hardening behavior,the tensile tests were carried out on the non-GBE and GBE AL6XN super-austenitic stainless steel(ASS)samples with a comparable grain size at two strain rates of 10^(-2)s^(-1)and 10^(-4)s^(-1).The evolution of deformation microstructures was revealed by transmission electron microscopy(TEM)and quasi-in situ electron backscatter diffraction(EBSD)observations.The results show that the influence of GBE on the mechanical properties of AL6XN super-ASS is mainly manifested in the change of work hardening behavior.At the early stage of plastic deformation,GBE samples show a slightly lowered work hardening rate,since the special grain boundaries(SBs)of a high fraction induce a higher dislocation free path and a weaker back stress;however,with increasing plastic deformation amount,the work hardening rate of GBE samples gradually surpasses that of non-GBE samples due to the better capacity of maintainable work hardening that is profited from the inhibited dislocation annihilation by SBs.In a word,the enhanced capacity of sustained work hardening effectively postpones the appearance of necking point and thus efficaciously ameliorates the ductility of GBE samples under the premise of little changes in yield strength and ultimate tensile strength.展开更多
基金supports from the National Natural Science Foundation of China(Nos.52371065,52001128)the Hubei Provincial Natural Science Foundation of China(No.2023AFB637)。
文摘As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stored energy on localized corrosion evolution in 2A97 Al-Cu-Li alloy,cold working and artificial aging were carried out to produce 2A97 Al-Cu-Li alloys under different thermomechanical conditions.Quasi-in-situ analysis,traditional immersion test and electrochemical measurement were then conducted to examine the corrosion behavior of 2A97 alloys.It is revealed that precipitate significantly affects Cu enrichment at corrosion fronts,which determines corrosion susceptibility of alloys,whereas grain-stored energy distribution is closely associated with localized corrosion propagation.It is also indicated that quasi-in-situ analysis exhibits a consistent corrosion evolution with traditional immersion tests,which is regarded as a proper method to explore localized corrosion mechanisms by providing local microstructural information with enhanced time and spatial resolutions.
基金the financial support of the Iran National Science Foundation INSF (Grant No. 97014179)supported by RTI2018-096391-B-C33 (MCIU/AEI/FEDER, UE) and S2018/NMT4411 (Regional government of Madrid and EU Structural and Social Funds)+1 种基金the support of RYC-2017-21843financial support from the Spanish National Science Foundation (CSIC) and the Ministerio de Ciencia, Innovacióny Universidades (MINECO) grant number RTI2018-096328-B-I00。
文摘This study investigated the effects of multi-walled carbon nanotubes(MWCNTs) and polycaprolactone(PCL) on the quasi-in vivo corrosion behavior of AZ31B Mg alloy treated by plasma electrolytic oxidation(PEO). Thin(~2 μm, PCTPCL4) and thick(~60 μm, PCTPCL6) PCL layers were applied only onto the MWCNTs-PEO coating(PCT) as it showed better corrosion performance. Findings reveal that incorporation of MWCNTs induced several structural and functional modifications in the PEO coating, such as increased roughness, a thicker inner barrier layer, and reduced hydrophilicity.Quasi-in vivo corrosion testing was carried out under controlled temperature, p H, and fluid flow in simulated body fluid(SBF) by electrochemical impedance spectroscopy(EIS) and hydrogen evolution experiments. EIS results revealed that, after 48 h immersion, a diffusion process controlled hydration of the ceramic coatings. Comparison of the collected hydrogen after 15 days of immersion in the quasi-in vivo environment revealed that the PEO and PCT ceramic coatings decreased hydrogen generation by up to 74% and 91%, respectively, compared to non-coated alloy.PCTPCL6 coating exhibited the lowest amount of collected hydrogen(0.2 m L/cm^(2)). The thick PCL layer delayed the onset of substrate corrosion for at least 120 h, reducing the corrosion rate by 85% compared with the PCT.
基金funded by the National Key Research and Development Program of China(No.2017YFB0702504)
文摘The initial micro-galvanic corrosion behavior of Mg-30wt%Ca alloy only containing Mg_(2)Ca andα-Mg was studied by immersion testing in a 0.9%Na Cl solution at 37°C.The quasi-in situ SEM and TEM results show that Mg_(2)Ca corroded easier thanα-Mg,indicating that Mg_(2)Ca acted as an anode.The work function(Φ)for Mg_(2)Ca calculated by first-principles is significantly lower compared to that forα-Mg.The Volta potential measured by a scanning Kelvin probe force microscope reveals that the Mg_(2)Ca had a relatively low Volta potential(ψ)value.The lowerΦandψvalues for Mg_(2)Ca indicate a lower electrochemical nobility,which is consistent with the experimental phenomenon.
基金financially supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.51871048 and 52171108。
文摘To examine the influence of grain boundary engineering(GBE)on the work hardening behavior,the tensile tests were carried out on the non-GBE and GBE AL6XN super-austenitic stainless steel(ASS)samples with a comparable grain size at two strain rates of 10^(-2)s^(-1)and 10^(-4)s^(-1).The evolution of deformation microstructures was revealed by transmission electron microscopy(TEM)and quasi-in situ electron backscatter diffraction(EBSD)observations.The results show that the influence of GBE on the mechanical properties of AL6XN super-ASS is mainly manifested in the change of work hardening behavior.At the early stage of plastic deformation,GBE samples show a slightly lowered work hardening rate,since the special grain boundaries(SBs)of a high fraction induce a higher dislocation free path and a weaker back stress;however,with increasing plastic deformation amount,the work hardening rate of GBE samples gradually surpasses that of non-GBE samples due to the better capacity of maintainable work hardening that is profited from the inhibited dislocation annihilation by SBs.In a word,the enhanced capacity of sustained work hardening effectively postpones the appearance of necking point and thus efficaciously ameliorates the ductility of GBE samples under the premise of little changes in yield strength and ultimate tensile strength.